Over the past few years, the possibility of modulating fast brain oscillatory activity in the gamma (γ) band through transcranial alternating current stimulation (tACS) has been discussed in the context of both cognitive enhancement and therapeutic scenarios. However, the effects of tACS targeting regions outside the motor cortex, as well as its spatial specificity, are still unclear. Here, we present a concurrent tACS-fMRI block design study to characterize the impact of 40 Hz tACS applied over the left and right dorsolateral prefrontal cortex (DLPFC) in healthy subjects. Results suggest an increase in blood oxygenation level-dependent (BOLD) activity in the targeted bilateral DLPFCs, as well as in surrounding brain areas affected by stimulation according to biophysical modeling, i.e., the premotor cortex and anterior cingulate cortex (ACC). However, off-target effects were also observed, primarily involving the visual cortices, with further effects on the supplementary motor areas (SMA), left subgenual cingulate, and right superior temporal gyrus. The specificity of 40 Hz tACS over bilateral DLPFC and the possibility for network-level effects should be considered in future studies, especially in the context of recently promoted gamma-induction therapeutic protocols for neurodegenerative disorders.
Local and Distributed fMRI Changes Induced by 40 Hz Gamma tACS of the Bilateral Dorsolateral Prefrontal Cortex: A Pilot Study / Mencarelli L.; Monti L.; Romanella S.; Neri F.; Koch G.; Salvador R.; Ruffini G.; Sprugnoli G.; Rossi S.; Santarnecchi E.. - In: NEURAL PLASTICITY. - ISSN 2090-5904. - ELETTRONICO. - 2022:(2022), pp. 6197505.0-6197505.0. [10.1155/2022/6197505]
Local and Distributed fMRI Changes Induced by 40 Hz Gamma tACS of the Bilateral Dorsolateral Prefrontal Cortex: A Pilot Study
Mencarelli L.Formal Analysis
;Romanella S.Investigation
;Neri F.Investigation
;Sprugnoli G.Conceptualization
;
2022
Abstract
Over the past few years, the possibility of modulating fast brain oscillatory activity in the gamma (γ) band through transcranial alternating current stimulation (tACS) has been discussed in the context of both cognitive enhancement and therapeutic scenarios. However, the effects of tACS targeting regions outside the motor cortex, as well as its spatial specificity, are still unclear. Here, we present a concurrent tACS-fMRI block design study to characterize the impact of 40 Hz tACS applied over the left and right dorsolateral prefrontal cortex (DLPFC) in healthy subjects. Results suggest an increase in blood oxygenation level-dependent (BOLD) activity in the targeted bilateral DLPFCs, as well as in surrounding brain areas affected by stimulation according to biophysical modeling, i.e., the premotor cortex and anterior cingulate cortex (ACC). However, off-target effects were also observed, primarily involving the visual cortices, with further effects on the supplementary motor areas (SMA), left subgenual cingulate, and right superior temporal gyrus. The specificity of 40 Hz tACS over bilateral DLPFC and the possibility for network-level effects should be considered in future studies, especially in the context of recently promoted gamma-induction therapeutic protocols for neurodegenerative disorders.File | Dimensione | Formato | |
---|---|---|---|
26_2022_gamma_fMRI_mencarelli.pdf
accesso aperto
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Creative commons
Dimensione
3.47 MB
Formato
Adobe PDF
|
3.47 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.