ObjectiveThe intensity of barbell bench press exercise is generally prescribed as the load to be lifted for a specific number of repetitions; however, other factors (e.g., execution velocity) can affect bench press exercise intensity. Moreover, no study assessed whether load distribution (i.e., the distance between the disc stacks on the two sides of the barbell) affects exercise intensity. The present study aims to assess how different combinations of load, velocity, and barbell load distribution affect the number of repetitions to failure (REPfailure), and rating of perceived exertion (RPEfatigue) and number of repetitions (REPfatigue) at fatigue onset. MethodsTen males (age 23.3 +/- 1.8 years) performed bench press exercises to exhaustion using random combinations of three loads (50%, 65%, and 80% of 1 repetition maximum), three execution velocities (50%, 70%, and 90% of maximal concentric velocity), and two load distributions (narrow and wide). Three separate three-way repeated-measures ANOVAs were performed to assess the effect of load, velocity, and load distribution on REPfailure, RPEfatigue, and REPfatigue expressed as a percentage of REPfailure. ResultsREP(failure) was affected by load (p<0.001), velocity (p<0.001), and distribution (p = 0.005). The interactions between load and velocity (p<0.001) and load and distribution (p = 0.004) showed a significant effect on REPfailure, whereas the interaction between velocity and distribution was not significant (p = 0.360). Overall, more REPfailure were performed using lower loads, higher velocities, and a wider distribution. RPEfatigue and REPfatigue were affected by load (pp = 0.007, respectively) and velocity (pp<0.001, respectively), and not by distribution (p = 0.510 and p = 0.571, respectively) or the two-way interaction effects. Overall, using higher loads yielded higher RPEfatigue but lower REPfatigue, while RPEfatigue and REPfatigue were higher when slower velocities were used. ConclusionThe current investigation shows that not only load but also velocity and barbell load distribution may influence bench press training volume and perceived exertion.

Barbell load distribution and lifting velocity affect bench press exercise volume and perceived exertion / Ferri Marini, Carlo; Shoaei, Vahid; Micheli, Lorenzo; Francia, Piergiorgio; Grossi, Tommaso; Maggio, Serena; Benelli, Piero; Federici, Ario; Lucertini, Francesco; Zoffoli, Luca. - In: PLOS ONE. - ISSN 1932-6203. - ELETTRONICO. - 17:(2022), pp. 0-0. [10.1371/journal.pone.0278909]

Barbell load distribution and lifting velocity affect bench press exercise volume and perceived exertion

Francia, Piergiorgio;
2022

Abstract

ObjectiveThe intensity of barbell bench press exercise is generally prescribed as the load to be lifted for a specific number of repetitions; however, other factors (e.g., execution velocity) can affect bench press exercise intensity. Moreover, no study assessed whether load distribution (i.e., the distance between the disc stacks on the two sides of the barbell) affects exercise intensity. The present study aims to assess how different combinations of load, velocity, and barbell load distribution affect the number of repetitions to failure (REPfailure), and rating of perceived exertion (RPEfatigue) and number of repetitions (REPfatigue) at fatigue onset. MethodsTen males (age 23.3 +/- 1.8 years) performed bench press exercises to exhaustion using random combinations of three loads (50%, 65%, and 80% of 1 repetition maximum), three execution velocities (50%, 70%, and 90% of maximal concentric velocity), and two load distributions (narrow and wide). Three separate three-way repeated-measures ANOVAs were performed to assess the effect of load, velocity, and load distribution on REPfailure, RPEfatigue, and REPfatigue expressed as a percentage of REPfailure. ResultsREP(failure) was affected by load (p<0.001), velocity (p<0.001), and distribution (p = 0.005). The interactions between load and velocity (p<0.001) and load and distribution (p = 0.004) showed a significant effect on REPfailure, whereas the interaction between velocity and distribution was not significant (p = 0.360). Overall, more REPfailure were performed using lower loads, higher velocities, and a wider distribution. RPEfatigue and REPfatigue were affected by load (pp = 0.007, respectively) and velocity (pp<0.001, respectively), and not by distribution (p = 0.510 and p = 0.571, respectively) or the two-way interaction effects. Overall, using higher loads yielded higher RPEfatigue but lower REPfatigue, while RPEfatigue and REPfatigue were higher when slower velocities were used. ConclusionThe current investigation shows that not only load but also velocity and barbell load distribution may influence bench press training volume and perceived exertion.
2022
17
0
0
Ferri Marini, Carlo; Shoaei, Vahid; Micheli, Lorenzo; Francia, Piergiorgio; Grossi, Tommaso; Maggio, Serena; Benelli, Piero; Federici, Ario; Lucertini...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1308128
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact