In this paper, we study how synchronization and state estimation are related in the context of elementary cellular automata. We first characterize the synchronization error between two 1D elementary cellular automata implementing Wolfram's 18th rule. Then we propose a simple approach to statistically model the transient phase of the synchronization error spread. We finally present a way to utilize this model of the error spread to place mobile sensors in order to reduce the overall synchronization error when the initial error is small.

Synchronisation of Elementary Cellular Automata with a Small Initial Error. Application to Rule 18 / Plenet, T; El Yacoubi, S; Raievsky, C; Lefevre, L; Bagnoli, F. - STAMPA. - 13402:(2022), pp. 73-82. (Intervento presentato al convegno 15th International Conference on Cellular Automata for Research and Industry, ACRI 2022 tenutosi a Geneva (Switzerland) nel 12-15/9/2022) [10.1007/978-3-031-14926-9_7].

Synchronisation of Elementary Cellular Automata with a Small Initial Error. Application to Rule 18

Bagnoli, F
2022

Abstract

In this paper, we study how synchronization and state estimation are related in the context of elementary cellular automata. We first characterize the synchronization error between two 1D elementary cellular automata implementing Wolfram's 18th rule. Then we propose a simple approach to statistically model the transient phase of the synchronization error spread. We finally present a way to utilize this model of the error spread to place mobile sensors in order to reduce the overall synchronization error when the initial error is small.
2022
Cellular Automata
15th International Conference on Cellular Automata for Research and Industry, ACRI 2022
Geneva (Switzerland)
12-15/9/2022
Goal 4: Quality education
Plenet, T; El Yacoubi, S; Raievsky, C; Lefevre, L; Bagnoli, F
File in questo prodotto:
File Dimensione Formato  
Synchronisation of Elementary Cellular Automata with a Small Initial Error ACRI2022.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 621.05 kB
Formato Adobe PDF
621.05 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1308671
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact