We prove that every Gauduchon metric on an Inoue-Bombieri surface admits a strongly leafwise flat form in its $\partial\overline\partial$-class. Using this result, we deduce uniform convergence of the normalized Chern-Ricci flow starting at any Gauduchon metric on all Inoue-Bombieri surfaces. We also show that the convergence is smooth with bounded curvature for initial metrics in the $\partial\overline\partial$-class of the Tricerri/Vaisman metric.
Leafwise flat forms on Inoue-Bombieri surfaces / Daniele Angella; Valentino Tosatti. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - STAMPA. - 285:(2023), pp. 110015.1-110015.34. [10.1016/j.jfa.2023.110015]
Leafwise flat forms on Inoue-Bombieri surfaces
Daniele Angella;
2023
Abstract
We prove that every Gauduchon metric on an Inoue-Bombieri surface admits a strongly leafwise flat form in its $\partial\overline\partial$-class. Using this result, we deduce uniform convergence of the normalized Chern-Ricci flow starting at any Gauduchon metric on all Inoue-Bombieri surfaces. We also show that the convergence is smooth with bounded curvature for initial metrics in the $\partial\overline\partial$-class of the Tricerri/Vaisman metric.File | Dimensione | Formato | |
---|---|---|---|
angella-tosatti.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
586.18 kB
Formato
Adobe PDF
|
586.18 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.