The increasing resistance of bacteria to conventional antibiotics represents a severe global emergency for human health. The broad-spectrum antibacterial activity of silver has been known for a long time, and silver at the nanoscale shows enhanced antibacterial activity. This has prompted research into the development of silver-based nanomaterials for applications in clinical settings. In this work, the synthesis of three different silver nanoparticles (AgNPs) hybrids using both organic and inorganic supports with intrinsic antibacterial properties is described. The tuning of the AgNPs’ shape and size according to the type of bioactive support was also investigated. Specifically, the commercially available sulfated cellulose nanocrystal (CNC), the salicylic acid functionalized reduced graphene oxide (rGO-SA), and the commercially available titanium dioxide (TiO2) were chosen as organic (CNC, rGO-SA) and inorganic (TiO2) supports. Then, the antimicrobial activity of the AgNP composites was assessed on clinically relevant multi-drug-resistant bacteria and the fungus Candida albicans. The results show how the formation of Ag nanoparticles on the selected supports provides the resulting composite materials with an effective antibacterial activity

Shaping Silver Nanoparticles’ Size through the Carrier Composition: Synthesis and Antimicrobial Activity / Cacaci, Margherita; Biagiotti, Giacomo; Toniolo, Gianluca; Albino, Martin; Sangregorio, Claudio; Severi, Mirko; Di Vito, Maura; Squitieri, Damiano; Contiero, Luca; Paggi, Marco; Marelli, Marcello; Cicchi, Stefano; Bugli, Francesca; Richichi, Barbara. - In: NANOMATERIALS. - ISSN 2079-4991. - ELETTRONICO. - 13:(2023), pp. 1585.1-1585.11. [10.3390/nano13101585]

Shaping Silver Nanoparticles’ Size through the Carrier Composition: Synthesis and Antimicrobial Activity

Biagiotti, Giacomo;Toniolo, Gianluca;Albino, Martin;Sangregorio, Claudio;Severi, Mirko;Contiero, Luca;Cicchi, Stefano;Richichi, Barbara
2023

Abstract

The increasing resistance of bacteria to conventional antibiotics represents a severe global emergency for human health. The broad-spectrum antibacterial activity of silver has been known for a long time, and silver at the nanoscale shows enhanced antibacterial activity. This has prompted research into the development of silver-based nanomaterials for applications in clinical settings. In this work, the synthesis of three different silver nanoparticles (AgNPs) hybrids using both organic and inorganic supports with intrinsic antibacterial properties is described. The tuning of the AgNPs’ shape and size according to the type of bioactive support was also investigated. Specifically, the commercially available sulfated cellulose nanocrystal (CNC), the salicylic acid functionalized reduced graphene oxide (rGO-SA), and the commercially available titanium dioxide (TiO2) were chosen as organic (CNC, rGO-SA) and inorganic (TiO2) supports. Then, the antimicrobial activity of the AgNP composites was assessed on clinically relevant multi-drug-resistant bacteria and the fungus Candida albicans. The results show how the formation of Ag nanoparticles on the selected supports provides the resulting composite materials with an effective antibacterial activity
2023
13
1
11
Cacaci, Margherita; Biagiotti, Giacomo; Toniolo, Gianluca; Albino, Martin; Sangregorio, Claudio; Severi, Mirko; Di Vito, Maura; Squitieri, Damiano; Contiero, Luca; Paggi, Marco; Marelli, Marcello; Cicchi, Stefano; Bugli, Francesca; Richichi, Barbara
File in questo prodotto:
File Dimensione Formato  
Nanomaterials 2023.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 2.02 MB
Formato Adobe PDF
2.02 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1310920
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact