The sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) plays an essential role in maintaining the low cytosolic Ca2+ level that enables a variety of cellular processes. SERCA couples ATP hydrolysis to the transport of two Ca2+ ions against their electrochemical potential gradient from the cytoplasm into the lumen of the sarco/endoplasmic reticulum (SR/ER). Because of its central role in regulating cytoplasmic Ca2+ concentration, SERCA dysfunction has been associated with several pathological conditions. Stimulation of SERCA activity may represent a potential therapeutic strategy in various disease states connected with dysfunctional SERCA. The natural phenolic compound 6-gingerol, the most abundant and the major biologically active compound of ginger, was reported to activate the SERCA enzyme. The present study aimed at investigating the effect of 6-gingerol on SERCA transport activity using a bioelectrochemical approach based on a solid supported membrane (SSM). We first performed a voltammetric characterization of 6-gingerol to better understand its electrochemical behavior. We then studied the interaction of 6-gingerol with SR vesicles containing SERCA adsorbed on the SSM electrode. The measured current signals indicated that ATP-dependent Ca2+ translocation by SERCA was remarkably increased in the presence of 6-gingerol at low micromolar concentration. We also found that 6-gingerol has a rather high affinity for SERCA (EC50 of 1.8 ± 0.3 µM), and SERCA activation by 6-gingerol is reversible. The observed stimulatory effect of 6-gingerol on SERCA Ca2+-translocating activity may be beneficial in the prevention and/or treatment of pathological conditions related to SERCA dysfunction.

A bioelectrochemical approach based on a solid supported membrane to evaluate the effect of natural products on Ca2+-ATPase: The case of 6-gingerol / Sfragano P.S.; Palchetti I.; Tadini Buoninsegni F.. - In: ELECTROCHIMICA ACTA. - ISSN 0013-4686. - ELETTRONICO. - 458:(2023), pp. 142515.0-142515.0. [10.1016/j.electacta.2023.142515]

A bioelectrochemical approach based on a solid supported membrane to evaluate the effect of natural products on Ca2+-ATPase: The case of 6-gingerol

Sfragano P. S.;Palchetti I.
;
Tadini Buoninsegni F.
2023

Abstract

The sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) plays an essential role in maintaining the low cytosolic Ca2+ level that enables a variety of cellular processes. SERCA couples ATP hydrolysis to the transport of two Ca2+ ions against their electrochemical potential gradient from the cytoplasm into the lumen of the sarco/endoplasmic reticulum (SR/ER). Because of its central role in regulating cytoplasmic Ca2+ concentration, SERCA dysfunction has been associated with several pathological conditions. Stimulation of SERCA activity may represent a potential therapeutic strategy in various disease states connected with dysfunctional SERCA. The natural phenolic compound 6-gingerol, the most abundant and the major biologically active compound of ginger, was reported to activate the SERCA enzyme. The present study aimed at investigating the effect of 6-gingerol on SERCA transport activity using a bioelectrochemical approach based on a solid supported membrane (SSM). We first performed a voltammetric characterization of 6-gingerol to better understand its electrochemical behavior. We then studied the interaction of 6-gingerol with SR vesicles containing SERCA adsorbed on the SSM electrode. The measured current signals indicated that ATP-dependent Ca2+ translocation by SERCA was remarkably increased in the presence of 6-gingerol at low micromolar concentration. We also found that 6-gingerol has a rather high affinity for SERCA (EC50 of 1.8 ± 0.3 µM), and SERCA activation by 6-gingerol is reversible. The observed stimulatory effect of 6-gingerol on SERCA Ca2+-translocating activity may be beneficial in the prevention and/or treatment of pathological conditions related to SERCA dysfunction.
2023
458
0
0
Sfragano P.S.; Palchetti I.; Tadini Buoninsegni F.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S001346862300693X-main.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 1.62 MB
Formato Adobe PDF
1.62 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1312259
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact