In real world applications, signals can be suitably reconstructed by nonlinear procedures; this justifies the study of nonlinear approximation operators. In this paper, we prove some quantitative estimates for the nonlinear sampling Kantorovich operators in the multivariate setting using the modulus of smoothness of $L^p(\mathbb{R}^n)$. The above results have been then extended to the general case of Orlicz spaces $L^{\varphi}(\mathbb{R}^n)$, so obtaining quantitative estimates in several instances of well-known and useful spaces.
Nonlinear multivariate sampling Kantorovich operators: quantitative estimates in functional spaces / Cetin N.; Costarelli D.; Natale M.; Vinti G.. - In: DOLOMITES RESEARCH NOTES ON APPROXIMATION. - ISSN 2035-6803. - ELETTRONICO. - 15:(2022), pp. 12-25. [10.14658/pupj-drna-2022-3-3]
Nonlinear multivariate sampling Kantorovich operators: quantitative estimates in functional spaces
Natale M.;
2022
Abstract
In real world applications, signals can be suitably reconstructed by nonlinear procedures; this justifies the study of nonlinear approximation operators. In this paper, we prove some quantitative estimates for the nonlinear sampling Kantorovich operators in the multivariate setting using the modulus of smoothness of $L^p(\mathbb{R}^n)$. The above results have been then extended to the general case of Orlicz spaces $L^{\varphi}(\mathbb{R}^n)$, so obtaining quantitative estimates in several instances of well-known and useful spaces.File | Dimensione | Formato | |
---|---|---|---|
CCNV2022.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
279.75 kB
Formato
Adobe PDF
|
279.75 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.