We give necessary and sufficient conditions for the real distributions defined by a metallic pseudo-Riemannian structure to be integrable and geodesically invariant, in terms of associated tensor fields to the metallic structures and of adapted connections. In the integrable case, we prove a Chen-type inequality for these distributions and provide conditions for a metallic map to preserve these distributions. If the structure is metallic Norden, we describe the complex metallic distributions in the same spirit.

Foliations induced by metallic structures / Antonella Nannicini; Adara Monica Blaga. - In: NEW YORK JOURNAL OF MATHEMATICS. - ISSN 1076-9803. - STAMPA. - 29:(2023), pp. 771-791.

Foliations induced by metallic structures

Antonella Nannicini;
2023

Abstract

We give necessary and sufficient conditions for the real distributions defined by a metallic pseudo-Riemannian structure to be integrable and geodesically invariant, in terms of associated tensor fields to the metallic structures and of adapted connections. In the integrable case, we prove a Chen-type inequality for these distributions and provide conditions for a metallic map to preserve these distributions. If the structure is metallic Norden, we describe the complex metallic distributions in the same spirit.
2023
29
771
791
Antonella Nannicini; Adara Monica Blaga
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1317531
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact