Abstract Congenital disorders of glycosylation (CDG) are genetic multisystem diseases, characterized by defective glycoconjugate synthesis. A small number of CDG with isolated liver damage have been described, such as TMEM199-CDG, a non-encephalopathic liver disorder with Wilson disease-like phenotype. Only eight patients with TMEM199-CDG have been described including seven Europeans (originating from Greece and Italy) and one Chinese. Three patients from southern Italy (Campania) shared the same known missense mutation pathogenetic variant NM_152464.3:c. 92G > C (p.Arg31Pro), also found in a Greek patient. Here we report a new patient from southern Italy (Sicily), with a homozygous c.92G > C p.(Arg31Pro) variant in TMEM199. The patient's phenotype is characterized by mild non-progressive hepatopathy with a normal hepatic echo structure. A persistent increase in serum transaminases, total and low-density lipoprotein cholesterol and low serum ceruloplasmin and copper levels and normal urinary copper excretion were observed. Matrix-assisted laser desorption/ionization mass spectrometry analyses showed abnormal N- and O- protein glycosylation, indicative of a Golgi processing defect and supporting the function of TMEM199 in maintaining Golgi homeostasis. TMEM199-CDG is an ultra-rare CDG relatively frequent in the southern Mediterranean area (7 in 9 patients, 77%). It is mainly associated with the c.92G > C (p.Arg31Pro) pathogenetic allele globally reported in 4 out of 7 families (57%), including one from Greece and three unrelated families from southern Italy. The almost uniform clinical phenotype described in patients with TMEM199-CDG appears to reflect a higher prevalence of the same variant in patients from the southern Mediterranean area.

Higher frequency of TMEM199-CDG in the southern mediterranean area is associated with c.92G>C (p.Arg31Pro) mutation / Fiumara A, Sapuppo A, Ferri L, Arena A, Prato A, Garozzo D, Sturiale L, Morrone A, Barone R.. - In: EUROPEAN JOURNAL OF MEDICAL GENETICS. - ISSN 1769-7212. - STAMPA. - 66:(2023), pp. 104709.1-104709.6. [10.1016/j.ejmg.2023.104709]

Higher frequency of TMEM199-CDG in the southern mediterranean area is associated with c.92G>C (p.Arg31Pro) mutation

Morrone A;
2023

Abstract

Abstract Congenital disorders of glycosylation (CDG) are genetic multisystem diseases, characterized by defective glycoconjugate synthesis. A small number of CDG with isolated liver damage have been described, such as TMEM199-CDG, a non-encephalopathic liver disorder with Wilson disease-like phenotype. Only eight patients with TMEM199-CDG have been described including seven Europeans (originating from Greece and Italy) and one Chinese. Three patients from southern Italy (Campania) shared the same known missense mutation pathogenetic variant NM_152464.3:c. 92G > C (p.Arg31Pro), also found in a Greek patient. Here we report a new patient from southern Italy (Sicily), with a homozygous c.92G > C p.(Arg31Pro) variant in TMEM199. The patient's phenotype is characterized by mild non-progressive hepatopathy with a normal hepatic echo structure. A persistent increase in serum transaminases, total and low-density lipoprotein cholesterol and low serum ceruloplasmin and copper levels and normal urinary copper excretion were observed. Matrix-assisted laser desorption/ionization mass spectrometry analyses showed abnormal N- and O- protein glycosylation, indicative of a Golgi processing defect and supporting the function of TMEM199 in maintaining Golgi homeostasis. TMEM199-CDG is an ultra-rare CDG relatively frequent in the southern Mediterranean area (7 in 9 patients, 77%). It is mainly associated with the c.92G > C (p.Arg31Pro) pathogenetic allele globally reported in 4 out of 7 families (57%), including one from Greece and three unrelated families from southern Italy. The almost uniform clinical phenotype described in patients with TMEM199-CDG appears to reflect a higher prevalence of the same variant in patients from the southern Mediterranean area.
2023
66
1
6
Fiumara A, Sapuppo A, Ferri L, Arena A, Prato A, Garozzo D, Sturiale L, Morrone A, Barone R.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1321474
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact