Background: Hydration status has a direct role in sports performance. Bioelectrical Impedance Vector Analysis (BIVA) and Urine Specific Gravity (USG) are commonly used to assess hydration. The study aims to identify the sensitivity and relationship between BIVA and USG in a field sports setting. Methods: BIVA and USG measurements were conducted five times throughout one rugby season. 34 elite male rugby players (25.1 ± 4.4 years; 184.0 ± 7.8 cm; 99.9 ± 13.4 kg) were enrolled. Differences over time were tested using one-way repeated measures ANOVA, and Bonferroni’s post-hoc test was applied in pairwise comparisons. Resistance-reactance graphs and Hotelling’s T2 test were used to characterize the sample and to identify bioelectrical changes. A repeated measures correlation test was conducted for BIVA-USG associations. Results: Two clear trends were seen: (1) from July to September, there was a vector shortening and an increase of the phase angle (p < 0.001); and (2) from December to April, there was a vector lengthening and a decrease of the phase angle (p < 0.001). USG reported neither changes nor correlation with BIVA longitudinally (p > 0.05). Vector variations indicated a body fluid gain (especially in the intracellular compartment) and a body cell mass increase during the preseason, suggesting a physical condition and performance improvement. During the last months of the season, the kinetic was the opposite (fluid loss and decreased body cell mass). Conclusions: Results suggested that BIVA is sensitive to physiological changes and a better option than USG for assessing hydration changes during a rugby sports season.
In-Season Longitudinal Hydration/Body Cell Mass Ratio Changes in Elite Rugby Players / Álex Cebrián-Ponce, Cristian Petri, Pascal Izzicupo, Matteo Levi Micheli, Cristina Cortis, Andrea Fusco, Marta Carrasco-Marginet, Gabriele Mascherini. - In: SPORTS. - ISSN 2075-4663. - ELETTRONICO. - 11:(2023), pp. 142.1-142.10. [10.3390/sports11080142]
In-Season Longitudinal Hydration/Body Cell Mass Ratio Changes in Elite Rugby Players
Cristian Petri;Matteo Levi Micheli;Gabriele Mascherini
2023
Abstract
Background: Hydration status has a direct role in sports performance. Bioelectrical Impedance Vector Analysis (BIVA) and Urine Specific Gravity (USG) are commonly used to assess hydration. The study aims to identify the sensitivity and relationship between BIVA and USG in a field sports setting. Methods: BIVA and USG measurements were conducted five times throughout one rugby season. 34 elite male rugby players (25.1 ± 4.4 years; 184.0 ± 7.8 cm; 99.9 ± 13.4 kg) were enrolled. Differences over time were tested using one-way repeated measures ANOVA, and Bonferroni’s post-hoc test was applied in pairwise comparisons. Resistance-reactance graphs and Hotelling’s T2 test were used to characterize the sample and to identify bioelectrical changes. A repeated measures correlation test was conducted for BIVA-USG associations. Results: Two clear trends were seen: (1) from July to September, there was a vector shortening and an increase of the phase angle (p < 0.001); and (2) from December to April, there was a vector lengthening and a decrease of the phase angle (p < 0.001). USG reported neither changes nor correlation with BIVA longitudinally (p > 0.05). Vector variations indicated a body fluid gain (especially in the intracellular compartment) and a body cell mass increase during the preseason, suggesting a physical condition and performance improvement. During the last months of the season, the kinetic was the opposite (fluid loss and decreased body cell mass). Conclusions: Results suggested that BIVA is sensitive to physiological changes and a better option than USG for assessing hydration changes during a rugby sports season.File | Dimensione | Formato | |
---|---|---|---|
In-Season Longitudinal Hydration Body Cell Mass Ratio Changes in Elite Rugby Players.pdf
accesso aperto
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
463.12 kB
Formato
Adobe PDF
|
463.12 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.