The variable configuration of Raman spectroscopic platforms is one of the major obstacles in establishing Raman spectroscopy as a valuable physicochemical method within real-world scenarios such as clinical diagnostics. For such real world applications like diagnostic classification, the models should ideally be usable to predict data from different setups. Whether it is done by training a rugged model with data from many setups or by a primary-replica strategy where models are developed on a ‘primary’ setup and the test data are generated on ‘replicate’ setups, this is only possible if the Raman spectra from different setups are consistent, reproducible, and comparable. However, Raman spectra can be highly sensitive to the measurement conditions, and they change from setup to setup even if the same samples are measured. Although increasingly recognized as an issue, the dependence of the Raman spectra on the instrumental configuration is far from being fully understood and great effort is needed to address the resulting spectral variations and to correct for them. To make the severity of the situation clear, we present a round robin experiment investigating the comparability of 35 Raman spectroscopic devices with different configurations in 15 institutes within seven European countries from the COST (European Cooperation in Science and Technology) action Raman4clinics. The experiment was developed in a fashion that allows various instrumental configurations ranging from highly confocal setups to fibre-optic based systems with different excitation wavelengths. We illustrate the spectral variations caused by the instrumental configurations from the perspectives of peak shifts, intensity variations, peak widths, and noise levels. We conclude this contribution with recommendations that may help to improve the inter-laboratory studies.

Comparability of Raman Spectroscopic Configurations: A Large Scale Cross-Laboratory Study / Shuxia Guo, Claudia Beleites, Ute Neugebauer, Sara Abalde-Cela, Nils Kristian Afseth, Fatima Alsamad, Suresh Anand, Cuauhtemoc Araujo-Andrade, Sonja Aškrabić, Ertug Avci, Monica Baia, Malgorzata Baranska, Enrico Baria, Luis A. E. Batista de Carvalho, Philippe de Bettignies, Alois Bonifacio, Franck Bonnier, Eva Maria Brauchle, Hugh J. Byrne, Igor Chourpa, Riccardo Cicchi, Frederic Cuisinier, Mustafa Culha, Marcel Dahms, Catalina David, Ludovic Duponchel, Shiyamala Duraipandian, Samir F. El-Mashtoly, David I. Ellis, Gauthier Eppe, Guillaume Falgayrac, Ozren Gamulin, Benjamin Gardner, Peter Gardner, Klaus Gerwert, Evangelos J. Giamarellos-Bourboulis, Sveinbjorn Gizurarson, Marcin Gnyba, Royston Goodacre, Patrick Grysan, Orlando Guntinas-Lichius, Helga Helgadottir, Vlasta Mohaček Grošev, Catherine Kendall, Roman Kiselev, Micha Kölbach, Christoph Krafft, Sivashankar Krishnamoorthy, Patrick Kubryck, Bernhard Lendl, Pablo Loza-Alvarez, Fiona M. Lyng, Susanne Machill, Cedric Malherbe, Monica Marro, Maria Paula M. Marques, Ewelina Matuszyk, Carlo Francesco Morasso, Myriam Moreau, Howbeer Muhamadali, Valentina Mussi, Ioan Notingher, Marta Z. Pacia, Francesco S. Pavone, Guillaume Penel, Dennis Petersen, Olivier Piot, Julietta V. Rau, Marc Richter, Maria Krystyna Rybarczyk, Hamideh Salehi, Katja Schenke-Layland, Sebastian Schlücker, Markus Schosserer, Karin Schütze, Valter Sergo, Faris Sinjab, Janusz Smulko, Ganesh D. Sockalingum, Clara Stiebing, Nick Stone, Valérie Untereiner, Renzo Vanna, Karin Wieland, Jürgen Popp, and Thomas Bocklitz*. - In: ANALYTICAL CHEMISTRY. - ISSN 1520-6882. - ELETTRONICO. - (2020), pp. 15745-15756. [10.1021/acs.analchem.0c02696]

Comparability of Raman Spectroscopic Configurations: A Large Scale Cross-Laboratory Study

Suresh Anand;Enrico Baria;Riccardo Cicchi;Francesco S. Pavone;
2020

Abstract

The variable configuration of Raman spectroscopic platforms is one of the major obstacles in establishing Raman spectroscopy as a valuable physicochemical method within real-world scenarios such as clinical diagnostics. For such real world applications like diagnostic classification, the models should ideally be usable to predict data from different setups. Whether it is done by training a rugged model with data from many setups or by a primary-replica strategy where models are developed on a ‘primary’ setup and the test data are generated on ‘replicate’ setups, this is only possible if the Raman spectra from different setups are consistent, reproducible, and comparable. However, Raman spectra can be highly sensitive to the measurement conditions, and they change from setup to setup even if the same samples are measured. Although increasingly recognized as an issue, the dependence of the Raman spectra on the instrumental configuration is far from being fully understood and great effort is needed to address the resulting spectral variations and to correct for them. To make the severity of the situation clear, we present a round robin experiment investigating the comparability of 35 Raman spectroscopic devices with different configurations in 15 institutes within seven European countries from the COST (European Cooperation in Science and Technology) action Raman4clinics. The experiment was developed in a fashion that allows various instrumental configurations ranging from highly confocal setups to fibre-optic based systems with different excitation wavelengths. We illustrate the spectral variations caused by the instrumental configurations from the perspectives of peak shifts, intensity variations, peak widths, and noise levels. We conclude this contribution with recommendations that may help to improve the inter-laboratory studies.
2020
15745
15756
Shuxia Guo, Claudia Beleites, Ute Neugebauer, Sara Abalde-Cela, Nils Kristian Afseth, Fatima Alsamad, Suresh Anand, Cuauhtemoc Araujo-Andrade, Sonja Aškrabić, Ertug Avci, Monica Baia, Malgorzata Baranska, Enrico Baria, Luis A. E. Batista de Carvalho, Philippe de Bettignies, Alois Bonifacio, Franck Bonnier, Eva Maria Brauchle, Hugh J. Byrne, Igor Chourpa, Riccardo Cicchi, Frederic Cuisinier, Mustafa Culha, Marcel Dahms, Catalina David, Ludovic Duponchel, Shiyamala Duraipandian, Samir F. El-Mashtoly, David I. Ellis, Gauthier Eppe, Guillaume Falgayrac, Ozren Gamulin, Benjamin Gardner, Peter Gardner, Klaus Gerwert, Evangelos J. Giamarellos-Bourboulis, Sveinbjorn Gizurarson, Marcin Gnyba, Royston Goodacre, Patrick Grysan, Orlando Guntinas-Lichius, Helga Helgadottir, Vlasta Mohaček Grošev, Catherine Kendall, Roman Kiselev, Micha Kölbach, Christoph Krafft, Sivashankar Krishnamoorthy, Patrick Kubryck, Bernhard Lendl, Pablo Loza-Alvarez, Fiona M. Lyng, Susanne Machill, Cedric Malherbe, Monica Marro, Maria Paula M. Marques, Ewelina Matuszyk, Carlo Francesco Morasso, Myriam Moreau, Howbeer Muhamadali, Valentina Mussi, Ioan Notingher, Marta Z. Pacia, Francesco S. Pavone, Guillaume Penel, Dennis Petersen, Olivier Piot, Julietta V. Rau, Marc Richter, Maria Krystyna Rybarczyk, Hamideh Salehi, Katja Schenke-Layland, Sebastian Schlücker, Markus Schosserer, Karin Schütze, Valter Sergo, Faris Sinjab, Janusz Smulko, Ganesh D. Sockalingum, Clara Stiebing, Nick Stone, Valérie Untereiner, Renzo Vanna, Karin Wieland, Jürgen Popp, and Thomas Bocklitz*
File in questo prodotto:
File Dimensione Formato  
23 - Comparability of Raman Spectroscopic Configurations.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 3.13 MB
Formato Adobe PDF
3.13 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1330005
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 42
social impact