In this article, we introduce a method to deal with the data-driven control design of nonlinear systems. We derive conditions to design controllers via (approximate) nonlinearity cancelation. These conditions take the compact form of data-dependent semidefinite programs. The method returns controllers that can be certified to stabilize the system even when data are perturbed and disturbances affect the dynamics of the system during the execution of the control task, in which case an estimate of the robustly positively invariant set is provided.

Learning Controllers From Data via Approximate Nonlinearity Cancellation / De Persis, Claudio; Rotulo, Monica; Tesi, Pietro. - In: IEEE TRANSACTIONS ON AUTOMATIC CONTROL. - ISSN 0018-9286. - ELETTRONICO. - 68:(2023), pp. 6082-6097. [10.1109/TAC.2023.3234889]

Learning Controllers From Data via Approximate Nonlinearity Cancellation

Tesi, Pietro
2023

Abstract

In this article, we introduce a method to deal with the data-driven control design of nonlinear systems. We derive conditions to design controllers via (approximate) nonlinearity cancelation. These conditions take the compact form of data-dependent semidefinite programs. The method returns controllers that can be certified to stabilize the system even when data are perturbed and disturbances affect the dynamics of the system during the execution of the control task, in which case an estimate of the robustly positively invariant set is provided.
2023
68
6082
6097
De Persis, Claudio; Rotulo, Monica; Tesi, Pietro
File in questo prodotto:
File Dimensione Formato  
Learning_Controllers_From_Data_via_Approximate_Nonlinearity_Cancellation.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 1.16 MB
Formato Adobe PDF
1.16 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1330733
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 23
social impact