Consider a one-dimensional shift-invariant attractive spin-flip system in equilibrium, constituting a dynamic random environment, together with a nearest-neighbor random walk that on occupied sites has a local drift to the right but on vacant sites has a local drift to the left. In [2] we proved a law of large numbers for dynamic random environments satisfying a space-time mixing property called cone-mixing. If an attractive spin-flip system has a finite average coupling time at the origin for two copies starting from the all-occupied and the all-vacant configuration, respectively, then it is cone-mixing. In the present paper we prove a large deviation principle for the empirical speed of the random walk, both quenched and annealed, and exhibit some properties of the associated rate functions. Under an exponential space-time mixing condition for the spin-flip system, which is stronger than cone-mixing, the two rate functions have a unique zero, i.e., the slow-down phenomenon known to be possible in a static random environment does not survive in a fast mixing dynamic random environment. In contrast, we show that for the simple symmetric exclusion dynamics, which is not cone-mixing (and which is not a spin-flip system either), slow-down does occur

Large deviation principle for one-dimensional random walk in dynamic random environment: attractive spin-flips and simple symmetric exclusion / Avena L; den Hollander F; Redig F. - In: MARKOV PROCESSES AND RELATED FIELDS. - ISSN 1024-2953. - 16:(2010), pp. 139-168.

Large deviation principle for one-dimensional random walk in dynamic random environment: attractive spin-flips and simple symmetric exclusion

Avena L;
2010

Abstract

Consider a one-dimensional shift-invariant attractive spin-flip system in equilibrium, constituting a dynamic random environment, together with a nearest-neighbor random walk that on occupied sites has a local drift to the right but on vacant sites has a local drift to the left. In [2] we proved a law of large numbers for dynamic random environments satisfying a space-time mixing property called cone-mixing. If an attractive spin-flip system has a finite average coupling time at the origin for two copies starting from the all-occupied and the all-vacant configuration, respectively, then it is cone-mixing. In the present paper we prove a large deviation principle for the empirical speed of the random walk, both quenched and annealed, and exhibit some properties of the associated rate functions. Under an exponential space-time mixing condition for the spin-flip system, which is stronger than cone-mixing, the two rate functions have a unique zero, i.e., the slow-down phenomenon known to be possible in a static random environment does not survive in a fast mixing dynamic random environment. In contrast, we show that for the simple symmetric exclusion dynamics, which is not cone-mixing (and which is not a spin-flip system either), slow-down does occur
2010
16
139
168
Avena L; den Hollander F; Redig F
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1331019
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact