To react to unforeseen circumstances or amend abnormal situations in communication-centric systems, programmers are in charge of “undoing” the interactions which led to an undesired state. To assist this task, session-based languages can be endowed with reversibility mechanisms. In this paper we propose a language enriched with programming facilities to commit session interactions, to roll back the computation to a previous commit point, and to abort the session. Rollbacks in our language always bring the system to previous visited states and a rollback cannot bring the system back to a point prior to the last commit. Programmers are relieved from the burden of ensuring that a rollback never restores a checkpoint imposed by a session participant different from the rollback requester. Such undesired situations are prevented at design-time (statically) by relying on a decidable compliance check at the type level, implemented in MAUDE. We show that the language satisfies error-freedom and progress of a session.
Rollback Recovery in Session-Based Programming / Mezzina C.A.; Tiezzi F.; Yoshida N.. - STAMPA. - 13908:(2023), pp. 195-213. (Intervento presentato al convegno 25th International Conference on Coordination Models and Languages (COORDINATION 2023)) [10.1007/978-3-031-35361-1_11].
Rollback Recovery in Session-Based Programming
Tiezzi F.;
2023
Abstract
To react to unforeseen circumstances or amend abnormal situations in communication-centric systems, programmers are in charge of “undoing” the interactions which led to an undesired state. To assist this task, session-based languages can be endowed with reversibility mechanisms. In this paper we propose a language enriched with programming facilities to commit session interactions, to roll back the computation to a previous commit point, and to abort the session. Rollbacks in our language always bring the system to previous visited states and a rollback cannot bring the system back to a point prior to the last commit. Programmers are relieved from the burden of ensuring that a rollback never restores a checkpoint imposed by a session participant different from the rollback requester. Such undesired situations are prevented at design-time (statically) by relying on a decidable compliance check at the type level, implemented in MAUDE. We show that the language satisfies error-freedom and progress of a session.I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.