Angular statistics of cosmological observables are hard to compute. The main difficulty is due to the presence of highly-oscillatory Bessel functions which need to be integrated over. In this paper, we provide a simple and fast method to compute the angular power spectrum and bispectrum of any observable. The method is based on using an FFTlog algorithm to decompose the momentum-space statistics onto a basis of power-law functions. For each power law, the integrals over Bessel functions have a simple analytical solution. This allows us to efficiently evaluate these integrals, independently of the value of the multipole l. In particular, this method significantly speeds up the evaluation of the angular bispectrum compared to existing methods. To illustrate our algorithm, we compute the galaxy, lensing and CMB temperature angular power spectrum and bispectrum.
Efficient evaluation of angular power spectra and bispectra / Valentin Assassi; Marko Simonovic; Matias Zaldarriaga. - In: JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS. - ISSN 1475-7516. - STAMPA. - 2017:(2017), pp. 054-054. [10.1088/1475-7516/2017/11/054]
Efficient evaluation of angular power spectra and bispectra
Marko Simonovic;
2017
Abstract
Angular statistics of cosmological observables are hard to compute. The main difficulty is due to the presence of highly-oscillatory Bessel functions which need to be integrated over. In this paper, we provide a simple and fast method to compute the angular power spectrum and bispectrum of any observable. The method is based on using an FFTlog algorithm to decompose the momentum-space statistics onto a basis of power-law functions. For each power law, the integrals over Bessel functions have a simple analytical solution. This allows us to efficiently evaluate these integrals, independently of the value of the multipole l. In particular, this method significantly speeds up the evaluation of the angular bispectrum compared to existing methods. To illustrate our algorithm, we compute the galaxy, lensing and CMB temperature angular power spectrum and bispectrum.File | Dimensione | Formato | |
---|---|---|---|
Assassi_2017_J._Cosmol._Astropart._Phys._2017_054.pdf
accesso aperto
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
1.24 MB
Formato
Adobe PDF
|
1.24 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.