Engineering bioactive iminosugars with pH-responsive groups is an emerging approach to develop pharmacological chaperones (PCs) able to improve lysosomal trafficking and enzymatic activity rescue of mutated enzymes. The use of inexpensive lmalic acid allowed introduction of orthoester units into the lipophilic chain of an enantiomerically pure iminosugar affording only two diastereoisomers contrary to previous related studies. The iminosugar was prepared stereoselectively from the chiral pool (d-mannose) and chosen as the lead bioactive compound, to develop novel candidates for restoring the lysosomal enzyme glucocerebrosidase (GCase) activity. The stability of orthoester-appended iminosugars was studied by 1H NMR spectroscopy both in neutral and acidic environments, and the loss of inhibitory activity with time in acid medium was demonstrated on cell lysates. Moreover, the ability to rescue GCase activity in the lysosomes as the result of a chaperoning effect was explored. A remarkable pharmacological chaperone activity was measured in fibroblasts hosting the homozygous L444P/L444P mutation, a cell line resistant to most PCs, besides the more commonly responding N370S mutation.
pH-Responsive Trihydroxylated Piperidines Rescue The Glucocerebrosidase Activity in Human Fibroblasts Bearing The Neuronopathic Gaucher-Related L444P/L444P Mutations in GBA1 Gene / Maria Giulia Davighi, Camilla Matassini, Francesca Clemente, Paolo Paoli, Amelia Morrone, Martina Cacciarini, Andrea Goti, Francesca Cardona. - In: CHEMBIOCHEM. - ISSN 1439-7633. - STAMPA. - (2024), pp. 1-13. [10.1002/cbic.202300730]
pH-Responsive Trihydroxylated Piperidines Rescue The Glucocerebrosidase Activity in Human Fibroblasts Bearing The Neuronopathic Gaucher-Related L444P/L444P Mutations in GBA1 Gene
Maria Giulia DavighiMembro del Collaboration Group
;Camilla MatassiniMembro del Collaboration Group
;Francesca Clemente
;Paolo PaoliMembro del Collaboration Group
;Amelia MorroneMembro del Collaboration Group
;Martina CacciariniMembro del Collaboration Group
;Andrea GotiMembro del Collaboration Group
;Francesca Cardona
2024
Abstract
Engineering bioactive iminosugars with pH-responsive groups is an emerging approach to develop pharmacological chaperones (PCs) able to improve lysosomal trafficking and enzymatic activity rescue of mutated enzymes. The use of inexpensive lmalic acid allowed introduction of orthoester units into the lipophilic chain of an enantiomerically pure iminosugar affording only two diastereoisomers contrary to previous related studies. The iminosugar was prepared stereoselectively from the chiral pool (d-mannose) and chosen as the lead bioactive compound, to develop novel candidates for restoring the lysosomal enzyme glucocerebrosidase (GCase) activity. The stability of orthoester-appended iminosugars was studied by 1H NMR spectroscopy both in neutral and acidic environments, and the loss of inhibitory activity with time in acid medium was demonstrated on cell lysates. Moreover, the ability to rescue GCase activity in the lysosomes as the result of a chaperoning effect was explored. A remarkable pharmacological chaperone activity was measured in fibroblasts hosting the homozygous L444P/L444P mutation, a cell line resistant to most PCs, besides the more commonly responding N370S mutation.File | Dimensione | Formato | |
---|---|---|---|
ChemBioChem - 2023 - Davighi - pH‐Responsive trihydroxylated piperidines rescue the glucocerebrosidase activity in human.pdf
accesso aperto
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Creative commons
Dimensione
1.58 MB
Formato
Adobe PDF
|
1.58 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.