The paper considers a class of discrete-time cellular neural networks (DT-CNNs) obtained by applying Euler's discretization scheme to standard CNNs. Let T be the DT-CNN interconnection matrix which is defined by the feedback cloning template. The paper shows that a DT-CNN is convergent, i.e. each solution tends to an equilibrium point, when T is symmetric and, in the case where T + En is not positive-semidefinite, the step size of Euler's discretization scheme does not exceed a given bound (En is the n x n unit matrix). It is shown that two relevant properties hold as a consequence of the local and space-invariant interconnecting structure of a DT-CNN, namely: (1) the bound on the step size can be easily estimated via the elements of the DT-CNN feedback cloning template only; (2) the bound is independent of the DT-CNN dimension. These two properties make DT-CNNs very effective in view of computer simulations and for the practical applications to high-dimensional processing tasks. The obtained results are proved via Lyapunov approach and LaSalle's Invariance Principle in combination with some fundamental inequalities enjoyed by the projection operator on a convex set. The results are compared with previous ones in the literature on the convergence of DT-CNNs and also with those obtained for different neural network models as the Brain-State-in-a-Box model. Finally, the results on convergence are illustrated via the application to some relevant 2D and 1D DT-CNNs for image processing tasks.

Convergence of Discrete-Time Cellular Neural Networks with Application to Image Processing / Di Marco, M; Forti, M; Pancioni, L; Tesi, A. - In: INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS IN APPLIED SCIENCES AND ENGINEERING. - ISSN 0218-1274. - ELETTRONICO. - 33:(2023), pp. 0-0. [10.1142/S0218127423501158]

Convergence of Discrete-Time Cellular Neural Networks with Application to Image Processing

Tesi, A
2023

Abstract

The paper considers a class of discrete-time cellular neural networks (DT-CNNs) obtained by applying Euler's discretization scheme to standard CNNs. Let T be the DT-CNN interconnection matrix which is defined by the feedback cloning template. The paper shows that a DT-CNN is convergent, i.e. each solution tends to an equilibrium point, when T is symmetric and, in the case where T + En is not positive-semidefinite, the step size of Euler's discretization scheme does not exceed a given bound (En is the n x n unit matrix). It is shown that two relevant properties hold as a consequence of the local and space-invariant interconnecting structure of a DT-CNN, namely: (1) the bound on the step size can be easily estimated via the elements of the DT-CNN feedback cloning template only; (2) the bound is independent of the DT-CNN dimension. These two properties make DT-CNNs very effective in view of computer simulations and for the practical applications to high-dimensional processing tasks. The obtained results are proved via Lyapunov approach and LaSalle's Invariance Principle in combination with some fundamental inequalities enjoyed by the projection operator on a convex set. The results are compared with previous ones in the literature on the convergence of DT-CNNs and also with those obtained for different neural network models as the Brain-State-in-a-Box model. Finally, the results on convergence are illustrated via the application to some relevant 2D and 1D DT-CNNs for image processing tasks.
2023
33
0
0
Di Marco, M; Forti, M; Pancioni, L; Tesi, A
File in questo prodotto:
File Dimensione Formato  
di-marco-et-al-2023-convergence-of-discrete-time-cellular-neural-networks-with-application-to-image-processing.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 3.78 MB
Formato Adobe PDF
3.78 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1346354
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact