Quantum corrections to the semiclassical drift-diffusion equation are obtained for electrons in graphene with a regularized energy-band. The derivation starts from the single-particle, single-band Wigner equation and exploits the quantum maximum entropy principle together with the classical Chapman-Enskog method. The functional calculus in phase-phase space is then used to expand the model to second order in the scaled Planck’s constant. The model is shown to be singular in the limit where the regularization parameter goes to zero.
Quantum corrections to drift-diffusion equations in graphene with smoothed energy-band / luigi barletti. - In: RIVISTA DI MATEMATICA DELLA UNIVERSITÀ DI PARMA. - ISSN 0035-6298. - STAMPA. - 15:(2024), pp. 0-0.
Quantum corrections to drift-diffusion equations in graphene with smoothed energy-band
luigi barletti
2024
Abstract
Quantum corrections to the semiclassical drift-diffusion equation are obtained for electrons in graphene with a regularized energy-band. The derivation starts from the single-particle, single-band Wigner equation and exploits the quantum maximum entropy principle together with the classical Chapman-Enskog method. The functional calculus in phase-phase space is then used to expand the model to second order in the scaled Planck’s constant. The model is shown to be singular in the limit where the regularization parameter goes to zero.File | Dimensione | Formato | |
---|---|---|---|
BARLETTI2023RMUP_REV.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
261.04 kB
Formato
Adobe PDF
|
261.04 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.