Quantum corrections to the semiclassical drift-diffusion equation are obtained for electrons in graphene with a regularized energy-band. The derivation starts from the single-particle, single-band Wigner equation and exploits the quantum maximum entropy principle together with the classical Chapman-Enskog method. The functional calculus in phase-phase space is then used to expand the model to second order in the scaled Planck’s constant. The model is shown to be singular in the limit where the regularization parameter goes to zero.

Quantum corrections to drift-diffusion equations in graphene with smoothed energy-band / luigi barletti. - In: RIVISTA DI MATEMATICA DELLA UNIVERSITÀ DI PARMA. - ISSN 0035-6298. - STAMPA. - 15:(2024), pp. 0-0.

Quantum corrections to drift-diffusion equations in graphene with smoothed energy-band

luigi barletti
2024

Abstract

Quantum corrections to the semiclassical drift-diffusion equation are obtained for electrons in graphene with a regularized energy-band. The derivation starts from the single-particle, single-band Wigner equation and exploits the quantum maximum entropy principle together with the classical Chapman-Enskog method. The functional calculus in phase-phase space is then used to expand the model to second order in the scaled Planck’s constant. The model is shown to be singular in the limit where the regularization parameter goes to zero.
2024
15
0
0
luigi barletti
File in questo prodotto:
File Dimensione Formato  
BARLETTI2023RMUP_REV.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 261.04 kB
Formato Adobe PDF
261.04 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1347926
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact