We report the synthesis and characterization of poly (vinyl alcohol) (PVA)/Chitosan (CT) cryogels for applications involving the uptake and entrapment of particulate and bacterial colonies. In particular, we systematically investigated the network and pore structures of the gels as a function of CT content and for different freeze-thaw times, combining Small Angle X-Ray Scattering (SAXS), Scanning Electron Microscopy (SEM), and confocal microscopy. The nanoscale analysis obtained from SAXS shows that while the characteristic correlation length of the network is poorly affected by composition and freeze-thaw time, the characteristic size of heterogeneities associated with PVA crystallites decreases with CT content. SEM investigation evidences a transition to a more homogeneous network structure induced by the incorporation of CT that progressively builds a secondary network around the one formed by PVA. A detailed analysis of confocal microscopy image stacks allows to characterize the 3D porosity of the samples, revealing a significantly asymmetric shape of the pores. While the average volume of single pores increases with increasing CT content, the overall porosity remains almost unchanged as a result of the suppression of smaller pores in the PVA network with the progressive incorporation of the more homogeneous CT network. Increasing the freezing time in the FT cycles also results in a decrease of porosity, which can be associated with a growth in the crosslinking of the network due to PVA crystallization. The linear viscoelastic moduli measured by oscillatory rheology show a qualitatively comparable frequency-dependent response in all cases, with a moderate reduction with increasing CT content. This is attributed to changes in the structure of the strands of the PVA network.

Effect of Composition and Freeze-Thaw on the Network Structure, Porosity and Mechanical Properties of Polyvinyl-Alcohol/Chitosan Hydrogels / Soto Bustamante F.; Bassu G.; Fratini E.; Laurati M.. - In: GELS. - ISSN 2310-2861. - ELETTRONICO. - 9:(2023), pp. 396-396. [10.3390/gels9050396]

Effect of Composition and Freeze-Thaw on the Network Structure, Porosity and Mechanical Properties of Polyvinyl-Alcohol/Chitosan Hydrogels

Soto Bustamante F.;Bassu G.;Fratini E.;Laurati M.
2023

Abstract

We report the synthesis and characterization of poly (vinyl alcohol) (PVA)/Chitosan (CT) cryogels for applications involving the uptake and entrapment of particulate and bacterial colonies. In particular, we systematically investigated the network and pore structures of the gels as a function of CT content and for different freeze-thaw times, combining Small Angle X-Ray Scattering (SAXS), Scanning Electron Microscopy (SEM), and confocal microscopy. The nanoscale analysis obtained from SAXS shows that while the characteristic correlation length of the network is poorly affected by composition and freeze-thaw time, the characteristic size of heterogeneities associated with PVA crystallites decreases with CT content. SEM investigation evidences a transition to a more homogeneous network structure induced by the incorporation of CT that progressively builds a secondary network around the one formed by PVA. A detailed analysis of confocal microscopy image stacks allows to characterize the 3D porosity of the samples, revealing a significantly asymmetric shape of the pores. While the average volume of single pores increases with increasing CT content, the overall porosity remains almost unchanged as a result of the suppression of smaller pores in the PVA network with the progressive incorporation of the more homogeneous CT network. Increasing the freezing time in the FT cycles also results in a decrease of porosity, which can be associated with a growth in the crosslinking of the network due to PVA crystallization. The linear viscoelastic moduli measured by oscillatory rheology show a qualitatively comparable frequency-dependent response in all cases, with a moderate reduction with increasing CT content. This is attributed to changes in the structure of the strands of the PVA network.
2023
9
396
396
Goal 3: Good health and well-being
Soto Bustamante F.; Bassu G.; Fratini E.; Laurati M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1348264
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact