This study presents the Web-Agile Facial Emotion Recognition and Eye-Tracking System (WAFER-ET), which combines AI-based facial expression recognition and eye-tracking models. Eye tracking is implemented using WebGazer.js, and facial expression recognition using a custom lightweight CNN-based model (CLCM). Experimental analysis showed effective performance in the system's real-time processing and data streaming. The low delay between the experimental and real-time results platforms and low memory load were achieved. Moreover, integrating facial expression recognition and eye tracking in the WAFER-ET system enables different fields of application

Web-Agile Facial Emotion Recognition and Eye-Tracking System (WAFER-ET) / Gursesli, Mustafa Can; Cala, Federico; Abdullah, Febri; Thawonmas, Ruck; Duradoni, Mirko; Guazzini, Andrea; Lanata, Antonio. - ELETTRONICO. - (2023), pp. 147-148. (Intervento presentato al convegno International Conference on Consumer Electronics tenutosi a Berlin nel 4 September 2022) [10.1109/ICCE-Berlin58801.2023.10375633].

Web-Agile Facial Emotion Recognition and Eye-Tracking System (WAFER-ET)

Gursesli, Mustafa Can;Cala, Federico;Duradoni, Mirko;Guazzini, Andrea;Lanata, Antonio
Supervision
2023

Abstract

This study presents the Web-Agile Facial Emotion Recognition and Eye-Tracking System (WAFER-ET), which combines AI-based facial expression recognition and eye-tracking models. Eye tracking is implemented using WebGazer.js, and facial expression recognition using a custom lightweight CNN-based model (CLCM). Experimental analysis showed effective performance in the system's real-time processing and data streaming. The low delay between the experimental and real-time results platforms and low memory load were achieved. Moreover, integrating facial expression recognition and eye tracking in the WAFER-ET system enables different fields of application
2023
International Conference on Consumer Electronics
International Conference on Consumer Electronics
Berlin
4 September 2022
Gursesli, Mustafa Can; Cala, Federico; Abdullah, Febri; Thawonmas, Ruck; Duradoni, Mirko; Guazzini, Andrea; Lanata, Antonio
File in questo prodotto:
File Dimensione Formato  
conference_101719_ebin.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 513.5 kB
Formato Adobe PDF
513.5 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1349311
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact