We propose two exact approaches for non-convex quadratic integer minimization subject to linear constraints where lower bounds are computed by considering ellipsoidal relaxations of the feasible set. In the first approach, we intersect the ellipsoids with the feasible linear subspace. In the second approach we penalize exactly the linear constraints. We investigate the connection between both approaches theoretically. Experimental results show that the penalty approach significantly outperforms CPLEX on problems with small or medium size variable domains. © 2015 Elsevier B.V. All rights reserved.

A fast branch-and-bound algorithm for non-convex quadratic integer optimization subject to linear constraints using ellipsoidal relaxations / Buchheim, Christoph; DE SANTIS, MARIANNA; PALAGI, Laura. - In: OPERATIONS RESEARCH LETTERS. - ISSN 0167-6377. - STAMPA. - 43:(2015), pp. 384-388. [10.1016/j.orl.2015.05.001]

A fast branch-and-bound algorithm for non-convex quadratic integer optimization subject to linear constraints using ellipsoidal relaxations

DE SANTIS, MARIANNA;PALAGI, Laura
2015

Abstract

We propose two exact approaches for non-convex quadratic integer minimization subject to linear constraints where lower bounds are computed by considering ellipsoidal relaxations of the feasible set. In the first approach, we intersect the ellipsoids with the feasible linear subspace. In the second approach we penalize exactly the linear constraints. We investigate the connection between both approaches theoretically. Experimental results show that the penalty approach significantly outperforms CPLEX on problems with small or medium size variable domains. © 2015 Elsevier B.V. All rights reserved.
2015
43
384
388
Buchheim, Christoph; DE SANTIS, MARIANNA; PALAGI, Laura
File in questo prodotto:
File Dimensione Formato  
Buchheim_A-fast-branch-and-bound_Preprint_2015.pdf

Accesso chiuso

Licenza: Tutti i diritti riservati
Dimensione 139.75 kB
Formato Adobe PDF
139.75 kB Adobe PDF   Richiedi una copia
Buchheim_A-fast-branch-and-bound_2015.pdf

Accesso chiuso

Licenza: Tutti i diritti riservati
Dimensione 388.44 kB
Formato Adobe PDF
388.44 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1350101
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact