In the context of augmented Lagrangian approaches for solving semidefinite programming problems, we investigate the possibility of eliminating the positive semidefinite constraint on the dual matrix by employing a factorization. Hints on how to deal with the resulting unconstrained maximization of the augmented Lagrangian are given. We further use the approximate maximum of the augmented Lagrangian with the aim of improving the convergence rate of alternating direction augmented Lagrangian frameworks. Numerical results are reported, showing the benefits of the approach.

Using a factored dual in augmented Lagrangian methods for semidefinite programming / De Santis, Marianna; Rendl, Franz; Wiegele, Angelika. - In: OPERATIONS RESEARCH LETTERS. - ISSN 0167-6377. - 46:(2018), pp. 523-528. [10.1016/j.orl.2018.08.003]

Using a factored dual in augmented Lagrangian methods for semidefinite programming

De Santis, Marianna;
2018

Abstract

In the context of augmented Lagrangian approaches for solving semidefinite programming problems, we investigate the possibility of eliminating the positive semidefinite constraint on the dual matrix by employing a factorization. Hints on how to deal with the resulting unconstrained maximization of the augmented Lagrangian are given. We further use the approximate maximum of the augmented Lagrangian with the aim of improving the convergence rate of alternating direction augmented Lagrangian frameworks. Numerical results are reported, showing the benefits of the approach.
2018
46
523
528
De Santis, Marianna; Rendl, Franz; Wiegele, Angelika
File in questo prodotto:
File Dimensione Formato  
DeSantis_Using-a-factored_2018.pdf

Accesso chiuso

Licenza: Tutti i diritti riservati
Dimensione 332.21 kB
Formato Adobe PDF
332.21 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1350105
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact