BackgroundIngestion of alcoholic beverages is a known trigger of migraine attacks. However, whether and how ethanol exerts its pro-migraine action remains poorly known. Ethanol stimulates the transient receptor potential vanilloid 1 (TRPV1) channel, and its dehydrogenized metabolite, acetaldehyde, is a known TRP ankyrin 1 (TRPA1) agonist.MethodsPeriorbital mechanical allodynia following systemic ethanol and acetaldehyde was investigated in mice after TRPA1 and TRPV1 pharmacological antagonism and global genetic deletion. Mice with selective silencing of the receptor activated modifying protein 1 (RAMP1), a component of the calcitonin gene-related peptide (CGRP) receptor, in Schwann cells or TRPA1 in dorsal root ganglion (DRG) neurons or Schwann cells, were used after systemic ethanol and acetaldehyde.ResultsWe show in mice that intragastric ethanol administration evokes a sustained periorbital mechanical allodynia that is attenuated by systemic or local alcohol dehydrogenase inhibition, and TRPA1, but not TRPV1, global deletion, thus indicating the implication of acetaldehyde. Systemic (intraperitoneal) acetaldehyde administration also evokes periorbital mechanical allodynia. Importantly, periorbital mechanical allodynia by both ethanol and acetaldehyde is abrogated by pretreatment with the CGRP receptor antagonist, olcegepant, and a selective silencing of RAMP1 in Schwann cells. Periorbital mechanical allodynia by ethanol and acetaldehyde is also attenuated by cyclic AMP, protein kinase A, and nitric oxide inhibition and pretreatment with an antioxidant. Moreover, selective genetic silencing of TRPA1 in Schwann cells or DRG neurons attenuated periorbital mechanical allodynia by ethanol or acetaldehyde.ConclusionsResults suggest that, in mice, periorbital mechanical allodynia, a response that mimics cutaneous allodynia reported during migraine attacks, is elicited by ethanol via the systemic production of acetaldehyde that, by releasing CGRP, engages the CGRP receptor in Schwann cells. The ensuing cascade of intracellular events results in a Schwann cell TRPA1-dependent oxidative stress generation that eventually targets neuronal TRPA1 to signal allodynia from the periorbital area.

Acetaldehyde via CGRP receptor and TRPA1 in Schwann cells mediates ethanol-evoked periorbital mechanical allodynia in mice: relevance for migraine / Landini, Lorenzo; Souza Monteiro de Araujo, Daniel; Chieca, Martina; De Siena, Gaetano; Bellantoni, Elisa; Geppetti, Pierangelo; Nassini, Romina; De Logu, Francesco. - In: JOURNAL OF BIOMEDICAL SCIENCE. - ISSN 1423-0127. - ELETTRONICO. - 30:(2023), pp. 28.28-28.34. [10.1186/s12929-023-00922-6]

Acetaldehyde via CGRP receptor and TRPA1 in Schwann cells mediates ethanol-evoked periorbital mechanical allodynia in mice: relevance for migraine

Landini, Lorenzo;Souza Monteiro de Araujo, Daniel;Chieca, Martina;De Siena, Gaetano;Bellantoni, Elisa;Geppetti, Pierangelo;Nassini, Romina;De Logu, Francesco
2023

Abstract

BackgroundIngestion of alcoholic beverages is a known trigger of migraine attacks. However, whether and how ethanol exerts its pro-migraine action remains poorly known. Ethanol stimulates the transient receptor potential vanilloid 1 (TRPV1) channel, and its dehydrogenized metabolite, acetaldehyde, is a known TRP ankyrin 1 (TRPA1) agonist.MethodsPeriorbital mechanical allodynia following systemic ethanol and acetaldehyde was investigated in mice after TRPA1 and TRPV1 pharmacological antagonism and global genetic deletion. Mice with selective silencing of the receptor activated modifying protein 1 (RAMP1), a component of the calcitonin gene-related peptide (CGRP) receptor, in Schwann cells or TRPA1 in dorsal root ganglion (DRG) neurons or Schwann cells, were used after systemic ethanol and acetaldehyde.ResultsWe show in mice that intragastric ethanol administration evokes a sustained periorbital mechanical allodynia that is attenuated by systemic or local alcohol dehydrogenase inhibition, and TRPA1, but not TRPV1, global deletion, thus indicating the implication of acetaldehyde. Systemic (intraperitoneal) acetaldehyde administration also evokes periorbital mechanical allodynia. Importantly, periorbital mechanical allodynia by both ethanol and acetaldehyde is abrogated by pretreatment with the CGRP receptor antagonist, olcegepant, and a selective silencing of RAMP1 in Schwann cells. Periorbital mechanical allodynia by ethanol and acetaldehyde is also attenuated by cyclic AMP, protein kinase A, and nitric oxide inhibition and pretreatment with an antioxidant. Moreover, selective genetic silencing of TRPA1 in Schwann cells or DRG neurons attenuated periorbital mechanical allodynia by ethanol or acetaldehyde.ConclusionsResults suggest that, in mice, periorbital mechanical allodynia, a response that mimics cutaneous allodynia reported during migraine attacks, is elicited by ethanol via the systemic production of acetaldehyde that, by releasing CGRP, engages the CGRP receptor in Schwann cells. The ensuing cascade of intracellular events results in a Schwann cell TRPA1-dependent oxidative stress generation that eventually targets neuronal TRPA1 to signal allodynia from the periorbital area.
2023
30
28
34
Goal 3: Good health and well-being
Landini, Lorenzo; Souza Monteiro de Araujo, Daniel; Chieca, Martina; De Siena, Gaetano; Bellantoni, Elisa; Geppetti, Pierangelo; Nassini, Romina; De L...espandi
File in questo prodotto:
File Dimensione Formato  
Landini Journal Biochemical Science_2023_ethanol .pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 4.16 MB
Formato Adobe PDF
4.16 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1351032
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact