The Barzilai-Borwein (BB) method, an effective gradient descent method with clever choice of the step length, is adapted from nonlinear optimization to Riemannian manifold optimization. More generally, global convergence of a nonmonotone line search strategy for Riemannian optimization algorithms is proved under some standard assumptions. By a set of numerical tests, the Riemannian BB method with nonmonotone line search is shown to be competitive in several Riemannian optimization problems. When used to compute the matrix geometric mean, known as the Karcher mean of positive definite matrices, it notably outperforms existing first-order optimization methods.

The Riemannian Barzilai-Borwein method with nonmonotone line search and the matrix geometric mean computation / Iannazzo B.; Porcelli M.. - In: IMA JOURNAL OF NUMERICAL ANALYSIS. - ISSN 0272-4979. - STAMPA. - 38:(2018), pp. 495-517. [10.1093/imanum/drx015]

The Riemannian Barzilai-Borwein method with nonmonotone line search and the matrix geometric mean computation

Porcelli M.
2018

Abstract

The Barzilai-Borwein (BB) method, an effective gradient descent method with clever choice of the step length, is adapted from nonlinear optimization to Riemannian manifold optimization. More generally, global convergence of a nonmonotone line search strategy for Riemannian optimization algorithms is proved under some standard assumptions. By a set of numerical tests, the Riemannian BB method with nonmonotone line search is shown to be competitive in several Riemannian optimization problems. When used to compute the matrix geometric mean, known as the Karcher mean of positive definite matrices, it notably outperforms existing first-order optimization methods.
2018
38
495
517
Iannazzo B.; Porcelli M.
File in questo prodotto:
File Dimensione Formato  
IannazzoPorcelli_IMANUM_def_2018.pdf

Accesso chiuso

Licenza: Tutti i diritti riservati
Dimensione 642.38 kB
Formato Adobe PDF
642.38 kB Adobe PDF   Richiedi una copia
2018_imanum_ip.pdf

Accesso chiuso

Licenza: Tutti i diritti riservati
Dimensione 661.71 kB
Formato Adobe PDF
661.71 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1351277
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 48
social impact