PDE-constrained optimization aims at finding optimal setups for partial differential equations so that relevant quantities are minimized. Including nonsmooth L1sparsity promoting terms in the formulation of such problems results in more practically relevant computed controls but adds more challenges to the numerical solution of these problems. The needed L1-terms as well as additional inclusion of box control constraints require the use of semismooth Newton methods. We propose robust preconditioners for different formulations of the Newton equation. With the inclusion of a line-search strategy and an inexact approach for the solution of the linear systems, the resulting semismooth Newton's method is reliable for practical problems. Our results are underpinned by a theoretical analysis of the preconditioned matrix. Numerical experiments illustrate the robustness of the proposed scheme.
Preconditioning PDE-constrained optimization with L1-sparsity and control constraints / Porcelli, Margherita; Simoncini, Valeria; Stoll, Martin. - In: COMPUTERS & MATHEMATICS WITH APPLICATIONS. - ISSN 0898-1221. - STAMPA. - 74:(2017), pp. 1059-1075. [10.1016/j.camwa.2017.04.033]
Preconditioning PDE-constrained optimization with L1-sparsity and control constraints
Porcelli, Margherita;Simoncini, Valeria;
2017
Abstract
PDE-constrained optimization aims at finding optimal setups for partial differential equations so that relevant quantities are minimized. Including nonsmooth L1sparsity promoting terms in the formulation of such problems results in more practically relevant computed controls but adds more challenges to the numerical solution of these problems. The needed L1-terms as well as additional inclusion of box control constraints require the use of semismooth Newton methods. We propose robust preconditioners for different formulations of the Newton equation. With the inclusion of a line-search strategy and an inexact approach for the solution of the linear systems, the resulting semismooth Newton's method is reliable for practical problems. Our results are underpinned by a theoretical analysis of the preconditioned matrix. Numerical experiments illustrate the robustness of the proposed scheme.File | Dimensione | Formato | |
---|---|---|---|
2017_camwa_pss.pdf
Accesso chiuso
Licenza:
Tutti i diritti riservati
Dimensione
1.2 MB
Formato
Adobe PDF
|
1.2 MB | Adobe PDF | Richiedi una copia |
CAMWA_pss_2017_def.pdf
Accesso chiuso
Licenza:
Tutti i diritti riservati
Dimensione
937.62 kB
Formato
Adobe PDF
|
937.62 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.