In this paper we study the asymptotic behavior of solutions to the subelliptic p-Poisson equation as p goes to infinity in Carnot-Carathéodory spaces. In particular, introducing a suitable notion of differentiability, extend the celebrated result of Bhattacharya et al. (Rend Sem Mat Univ Politec Torino Fascicolo Speciale 47:15–68, 1989) and we prove that limits of such solutions solve in the sense of viscosity a hybrid first and second order PDE involving the infinity-Laplacian and the Eikonal equation.

The asymptotic p-Poisson equation as $p \rightarrow \infty$ in Carnot-Carathéodory spaces / Capogna, Luca; Giovannardi, Gianmarco; Pinamonti, Andrea; Verzellesi, Simone. - In: MATHEMATISCHE ANNALEN. - ISSN 0025-5831. - ELETTRONICO. - (2024), pp. 0-0. [10.1007/s00208-024-02805-z]

The asymptotic p-Poisson equation as $p \rightarrow \infty$ in Carnot-Carathéodory spaces

Giovannardi, Gianmarco;
2024

Abstract

In this paper we study the asymptotic behavior of solutions to the subelliptic p-Poisson equation as p goes to infinity in Carnot-Carathéodory spaces. In particular, introducing a suitable notion of differentiability, extend the celebrated result of Bhattacharya et al. (Rend Sem Mat Univ Politec Torino Fascicolo Speciale 47:15–68, 1989) and we prove that limits of such solutions solve in the sense of viscosity a hybrid first and second order PDE involving the infinity-Laplacian and the Eikonal equation.
2024
0
0
Capogna, Luca; Giovannardi, Gianmarco; Pinamonti, Andrea; Verzellesi, Simone
File in questo prodotto:
File Dimensione Formato  
s00208-024-02805-z (1).pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 558.76 kB
Formato Adobe PDF
558.76 kB Adobe PDF   Richiedi una copia
2302.03532v1.pdf

accesso aperto

Tipologia: Preprint (Submitted version)
Licenza: Open Access
Dimensione 439.25 kB
Formato Adobe PDF
439.25 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1351314
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact