A major hurdle in the study of rare tumors is a lack of existing preclinical models. Neuroendocrine prostate cancer is an uncommon and aggressive histologic variant of prostate cancer that may arise de novo or as a mechanism of treatment resistance in patients with pre-existing castration-resistant prostate cancer. There are few available models to study neuroendocrine prostate cancer. Here, we report the generation and characterization of tumor organoids derived from needle biopsies of metastatic lesions from four patients. We demonstrate genomic, transcriptomic, and epigenomic concordance between organoids and their corresponding patient tumors. We utilize these organoids to understand the biologic role of the epigenetic modifier EZH2 in driving molecular programs associated with neuroendocrine prostate cancer progression. High-throughput organoid drug screening nominated single agents and drug combinations suggesting repurposing opportunities. This proof of principle study represents a strategy for the study of rare cancer phenotypes.

Patient derived organoids to model rare prostate cancer phenotypes / Puca L.; Bareja R.; Prandi D.; Shaw R.; Benelli M.; Karthaus W.R.; Hess J.; Sigouros M.; Donoghue A.; Kossai M.; Gao D.; Cyrta J.; Sailer V.; Vosoughi A.; Pauli C.; Churakova Y.; Cheung C.; Deonarine L.D.; McNary T.J.; Rosati R.; Tagawa S.T.; Nanus D.M.; Mosquera J.M.; Sawyers C.L.; Chen Y.; Inghirami G.; Rao R.A.; Grandori C.; Elemento O.; Sboner A.; Demichelis F.; Rubin M.A.; Beltran H.. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - ELETTRONICO. - 9:(2018), pp. 2404.0-2404.0. [10.1038/s41467-018-04495-z]

Patient derived organoids to model rare prostate cancer phenotypes

Benelli M.;
2018

Abstract

A major hurdle in the study of rare tumors is a lack of existing preclinical models. Neuroendocrine prostate cancer is an uncommon and aggressive histologic variant of prostate cancer that may arise de novo or as a mechanism of treatment resistance in patients with pre-existing castration-resistant prostate cancer. There are few available models to study neuroendocrine prostate cancer. Here, we report the generation and characterization of tumor organoids derived from needle biopsies of metastatic lesions from four patients. We demonstrate genomic, transcriptomic, and epigenomic concordance between organoids and their corresponding patient tumors. We utilize these organoids to understand the biologic role of the epigenetic modifier EZH2 in driving molecular programs associated with neuroendocrine prostate cancer progression. High-throughput organoid drug screening nominated single agents and drug combinations suggesting repurposing opportunities. This proof of principle study represents a strategy for the study of rare cancer phenotypes.
2018
9
0
0
Puca L.; Bareja R.; Prandi D.; Shaw R.; Benelli M.; Karthaus W.R.; Hess J.; Sigouros M.; Donoghue A.; Kossai M.; Gao D.; Cyrta J.; Sailer V.; Vosoughi A.; Pauli C.; Churakova Y.; Cheung C.; Deonarine L.D.; McNary T.J.; Rosati R.; Tagawa S.T.; Nanus D.M.; Mosquera J.M.; Sawyers C.L.; Chen Y.; Inghirami G.; Rao R.A.; Grandori C.; Elemento O.; Sboner A.; Demichelis F.; Rubin M.A.; Beltran H.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1352328
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 231
  • ???jsp.display-item.citation.isi??? 223
social impact