Degradation mechanisms affecting non-methane volatile organic compounds (VOCs) during gas uprising from different hypogenic sources to the surface were investigated through extensive sampling surveys in areas encompassing a high enthalpy hydrothermal system associated with active volcanism, a CH4-rich sedimentary basin and a municipal waste landfill. For a comprehensive framework, published data from medium-to-high enthalpy hydrothermal systems were also included. The investigated systems were characterised by peculiar VOC suites that reflected the conditions of the genetic environments in which temperature, contents of organic matter, and gas fugacity had a major role. Differences in VOC patterns between source (gas vents and landfill gas) and soil gases indicated VOC transformations in soil. Processes acting in soil preferentially degraded high-molecular weight alkanes with respect to the low-molecular weight ones. Alkenes and cyclics roughly behaved like alkanes. Thiophenes were degraded to a larger extent with respect to alkylated benzenes, which were more reactive than benzene. Furan appeared less degraded than its alkylated homologues. Dimethylsulfoxide was generally favoured with respect to dimethylsulfide. Limonene and camphene were relatively unstable under aerobic conditions, while α-pinene was recalcitrant. O-bearing organic compounds (i.e., aldehydes, esters, ketones, alcohols, organic acids and phenol) acted as intermediate products of the ongoing VOC degradations in soil. No evidence for the degradation of halogenated compounds and benzothiazole was observed. This study pointed out how soil degradation processes reduce hypogenic VOC emissions and the important role played by physicochemical and biological parameters on the effective VOC attenuation capacity of the soil.
Soil processes modify the composition of volatile organic compounds (VOCs) from CO2- and CH4-dominated geogenic and landfill gases: A comprehensive study / Randazzo, A.; Venturi, S.; Tassi, F.. - In: SCIENCE OF THE TOTAL ENVIRONMENT. - ISSN 0048-9697. - ELETTRONICO. - 923:(2024), pp. 171483.0-171483.0. [10.1016/j.scitotenv.2024.171483]
Soil processes modify the composition of volatile organic compounds (VOCs) from CO2- and CH4-dominated geogenic and landfill gases: A comprehensive study
Venturi, S.;Tassi, F.
2024
Abstract
Degradation mechanisms affecting non-methane volatile organic compounds (VOCs) during gas uprising from different hypogenic sources to the surface were investigated through extensive sampling surveys in areas encompassing a high enthalpy hydrothermal system associated with active volcanism, a CH4-rich sedimentary basin and a municipal waste landfill. For a comprehensive framework, published data from medium-to-high enthalpy hydrothermal systems were also included. The investigated systems were characterised by peculiar VOC suites that reflected the conditions of the genetic environments in which temperature, contents of organic matter, and gas fugacity had a major role. Differences in VOC patterns between source (gas vents and landfill gas) and soil gases indicated VOC transformations in soil. Processes acting in soil preferentially degraded high-molecular weight alkanes with respect to the low-molecular weight ones. Alkenes and cyclics roughly behaved like alkanes. Thiophenes were degraded to a larger extent with respect to alkylated benzenes, which were more reactive than benzene. Furan appeared less degraded than its alkylated homologues. Dimethylsulfoxide was generally favoured with respect to dimethylsulfide. Limonene and camphene were relatively unstable under aerobic conditions, while α-pinene was recalcitrant. O-bearing organic compounds (i.e., aldehydes, esters, ketones, alcohols, organic acids and phenol) acted as intermediate products of the ongoing VOC degradations in soil. No evidence for the degradation of halogenated compounds and benzothiazole was observed. This study pointed out how soil degradation processes reduce hypogenic VOC emissions and the important role played by physicochemical and biological parameters on the effective VOC attenuation capacity of the soil.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0048969724016243-main.pdf
accesso aperto
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
14.48 MB
Formato
Adobe PDF
|
14.48 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.