The extracellular space is nanostructured, populated by heterogeneous classes of nanoparticles, e.g., extracellular vesicles and lipoproteins, which “made by cells for cells'' mediate intercellular, inter-organ, cross-species, and cross-kingdom communication. However, while techniques to study ENP biology in-vitro and in-vivo are becoming available, knowledge of their colloidal and interfacial properties is poor, although much needed. This paper experimentally shows, for the first time, that the aggregation of citrate-capped gold nanoparticles (AuNPs) triggered by lipid vesicle membranes and the related characteristic redshift of the plasmonic signature also applies/extends to lipoproteins. Such interaction leads to the formation of AuNP-lipoprotein hybrid nanostructures and is sensitive to lipoprotein classes and AuNP/lipoprotein molar ratio, paving the way to further synthetic and analytical developments.
On the interaction and nanoplasmonics of gold nanoparticles and lipoproteins / Zendrini A.; Cardellini J.; Frigerio R.; Bertoni M.; Berti D.; Bergese P.. - In: JCIS OPEN. - ISSN 2666-934X. - ELETTRONICO. - 11:(2023), pp. 100088.100088-100088.0. [10.1016/j.jciso.2023.100088]
On the interaction and nanoplasmonics of gold nanoparticles and lipoproteins
Cardellini J.;Bertoni M.;Berti D.Conceptualization
;Bergese P.
2023
Abstract
The extracellular space is nanostructured, populated by heterogeneous classes of nanoparticles, e.g., extracellular vesicles and lipoproteins, which “made by cells for cells'' mediate intercellular, inter-organ, cross-species, and cross-kingdom communication. However, while techniques to study ENP biology in-vitro and in-vivo are becoming available, knowledge of their colloidal and interfacial properties is poor, although much needed. This paper experimentally shows, for the first time, that the aggregation of citrate-capped gold nanoparticles (AuNPs) triggered by lipid vesicle membranes and the related characteristic redshift of the plasmonic signature also applies/extends to lipoproteins. Such interaction leads to the formation of AuNP-lipoprotein hybrid nanostructures and is sensitive to lipoprotein classes and AuNP/lipoprotein molar ratio, paving the way to further synthetic and analytical developments.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S2666934X23000156-main.pdf
accesso aperto
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
2.13 MB
Formato
Adobe PDF
|
2.13 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.