Random number generators (RNG) based on quantum mechanics are captivating due to their security and unpredictability compared to conventional generators, such as pseudo-random number generators and hardware-random number generators. This work analyzes evolutions in the extractable amount of randomness with increasing the Hilbert space dimension, state preparation subspace, or measurement subspace in a class of semi-device-independent quantum-RNG, where bounding the states' overlap is the core assumption, built on the prepare-and-measure scheme. We further discuss the effect of these factors on the complexity and draw a conclusion on the optimal scenario. We investigate the generic case of time-bin encoding scheme, define various input (state preparation) and outcome (measurement) subspaces, and discuss the optimal scenarios to obtain maximum entropy. Several input designs were experimentally tested and analyzed for their conceivable outcome arrangements. We evaluated their performance by considering the device's imperfections, particularly the after-pulsing effect and dark counts of the detectors. Finally, we demonstrate that this approach can boost the system entropy, resulting in more extractable randomness.

Generalized time-bin quantum random number generator with uncharacterized devices / Tebyanian, Hamid; Zahidy, Mujtaba; Müller, Ronny; Forchhammer, Søren; Bacco, Davide; Oxenløwe, Leif. K.. - In: EPJ QUANTUM TECHNOLOGY. - ISSN 2662-4400. - ELETTRONICO. - 11:(2024), pp. 15.0-15.0. [10.1140/epjqt/s40507-024-00227-z]

Generalized time-bin quantum random number generator with uncharacterized devices

Bacco, Davide;
2024

Abstract

Random number generators (RNG) based on quantum mechanics are captivating due to their security and unpredictability compared to conventional generators, such as pseudo-random number generators and hardware-random number generators. This work analyzes evolutions in the extractable amount of randomness with increasing the Hilbert space dimension, state preparation subspace, or measurement subspace in a class of semi-device-independent quantum-RNG, where bounding the states' overlap is the core assumption, built on the prepare-and-measure scheme. We further discuss the effect of these factors on the complexity and draw a conclusion on the optimal scenario. We investigate the generic case of time-bin encoding scheme, define various input (state preparation) and outcome (measurement) subspaces, and discuss the optimal scenarios to obtain maximum entropy. Several input designs were experimentally tested and analyzed for their conceivable outcome arrangements. We evaluated their performance by considering the device's imperfections, particularly the after-pulsing effect and dark counts of the detectors. Finally, we demonstrate that this approach can boost the system entropy, resulting in more extractable randomness.
2024
11
0
0
Tebyanian, Hamid; Zahidy, Mujtaba; Müller, Ronny; Forchhammer, Søren; Bacco, Davide; Oxenløwe, Leif. K.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1354912
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact