Two-photon direct laser writing enables the fabrication of shape-changing microstructures that can be exploited in stimuli responsive micro-robotics and photonics. The use of Liquid Crystalline Networks (LCN) allows to realize 3D micrometric objects that can contract along a specific direction in response to stimuli, such as temperature or light. In this paper, the fabrication of free-standing LCN microstructures is demonstrated as graphical units of a smart tag for simple physical and optical encryption. Using an array of identical pixels, information can be hidden to the observer and revealed only upon application of a specific stimulus. The reading mechanism is based on the shape-change of each pixel under stimuli and their color that combine together in a two-level encryption label. Once the stimulus is removed, the pixels recover their original shape and the message remains completely hidden. Therefore, an opto-mechanical equivalent of an "invisible ink" is realized. This new concept paves the way for introducing enhanced functionalities in smart micro-systems within a single lithography step, spanning from storage devices with physical encryption to complex motion actuators.

Liquid Crystalline Network Microstructures for Stimuli Responsive Labels with Multi‐Level Encryption / Donato, Simone; Nocentini, Sara; Martella, Daniele; Kolagatla, Srikanth; Wiersma, Diederik S.; Parmeggiani, Camilla; Delaney, Colm; Florea, Larisa. - In: SMALL. - ISSN 1613-6810. - STAMPA. - (2023), pp. 0-0. [10.1002/smll.202306802]

Liquid Crystalline Network Microstructures for Stimuli Responsive Labels with Multi‐Level Encryption

Donato, Simone
Membro del Collaboration Group
;
Martella, Daniele
Membro del Collaboration Group
;
Wiersma, Diederik S.
Membro del Collaboration Group
;
Parmeggiani, Camilla
Membro del Collaboration Group
;
2023

Abstract

Two-photon direct laser writing enables the fabrication of shape-changing microstructures that can be exploited in stimuli responsive micro-robotics and photonics. The use of Liquid Crystalline Networks (LCN) allows to realize 3D micrometric objects that can contract along a specific direction in response to stimuli, such as temperature or light. In this paper, the fabrication of free-standing LCN microstructures is demonstrated as graphical units of a smart tag for simple physical and optical encryption. Using an array of identical pixels, information can be hidden to the observer and revealed only upon application of a specific stimulus. The reading mechanism is based on the shape-change of each pixel under stimuli and their color that combine together in a two-level encryption label. Once the stimulus is removed, the pixels recover their original shape and the message remains completely hidden. Therefore, an opto-mechanical equivalent of an "invisible ink" is realized. This new concept paves the way for introducing enhanced functionalities in smart micro-systems within a single lithography step, spanning from storage devices with physical encryption to complex motion actuators.
2023
0
0
Goal 7: Affordable and clean energy
Donato, Simone; Nocentini, Sara; Martella, Daniele; Kolagatla, Srikanth; Wiersma, Diederik S.; Parmeggiani, Camilla; Delaney, Colm; Florea, Larisa
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1356452
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact