Purchasing lead time is the time elapsed between the moment in which an order for a good is sent to a supplier and the moment in which the order is delivered to the company that requested it. Forecasting of purchasing lead time is an essential task in the planning, management and control of industrial processes. It is of particular importance in the context of pharmaceutical supply chain, where avoiding long waiting times is essential to provide efficient healthcare services. The forecasting of lead times is, however, a very difficult task, due to the complexity of the production processes and the significant heterogeneity in the data. In this paper, we use machine learning regression algorithms to forecast purchasing lead times in a pharmaceutical supply chain, using a real-world industrial database. We compare five algorithms, namely k-nearest neighbors, support vector machines, random forests, linear regression and multilayer perceptrons. The support vector machines approach obtained the best performance overall, with an average error lower than two days. The dataset used in our experiments is made publicly available for future research.

Lead Time Forecasting with Machine Learning Techniques for a Pharmaceutical Supply Chain / de Oliveira M.B.; Zucchi G.; Lippi M.; Cordeiro D.F.; da Silva N.R.; Iori M.. - ELETTRONICO. - 1:(2021), pp. 634-641. (Intervento presentato al convegno 23rd International Conference on Enterprise Information Systems, ICEIS 2021 nel 2021).

Lead Time Forecasting with Machine Learning Techniques for a Pharmaceutical Supply Chain

Lippi M.;
2021

Abstract

Purchasing lead time is the time elapsed between the moment in which an order for a good is sent to a supplier and the moment in which the order is delivered to the company that requested it. Forecasting of purchasing lead time is an essential task in the planning, management and control of industrial processes. It is of particular importance in the context of pharmaceutical supply chain, where avoiding long waiting times is essential to provide efficient healthcare services. The forecasting of lead times is, however, a very difficult task, due to the complexity of the production processes and the significant heterogeneity in the data. In this paper, we use machine learning regression algorithms to forecast purchasing lead times in a pharmaceutical supply chain, using a real-world industrial database. We compare five algorithms, namely k-nearest neighbors, support vector machines, random forests, linear regression and multilayer perceptrons. The support vector machines approach obtained the best performance overall, with an average error lower than two days. The dataset used in our experiments is made publicly available for future research.
2021
International Conference on Enterprise Information Systems, ICEIS - Proceedings
23rd International Conference on Enterprise Information Systems, ICEIS 2021
2021
de Oliveira M.B.; Zucchi G.; Lippi M.; Cordeiro D.F.; da Silva N.R.; Iori M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1356513
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact