We explore the use of residual networks for argumentation mining, with an emphasis on link prediction. The method we propose makes no assumptions on document or argument structure. We evaluate it on a challenging dataset consisting of user-generated comments collected from an online platform. Results show that our model outperforms an equivalent deep network and offers results comparable with state-of-the-art methods that rely on domain knowledge.

Argumentative Link Prediction using Residual Networks and Multi-Objective Learning / Galassi A.; Lippi M.; Torroni P.. - ELETTRONICO. - (2018), pp. 1-10. (Intervento presentato al convegno 5th Workshop on Argument Mining, ArgMining@EMNLP 2018).

Argumentative Link Prediction using Residual Networks and Multi-Objective Learning

Lippi M.;
2018

Abstract

We explore the use of residual networks for argumentation mining, with an emphasis on link prediction. The method we propose makes no assumptions on document or argument structure. We evaluate it on a challenging dataset consisting of user-generated comments collected from an online platform. Results show that our model outperforms an equivalent deep network and offers results comparable with state-of-the-art methods that rely on domain knowledge.
2018
Proceedings of the 5th Workshop on Argument Mining, ArgMining@EMNLP 2018
5th Workshop on Argument Mining, ArgMining@EMNLP 2018
Galassi A.; Lippi M.; Torroni P.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1356614
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? ND
social impact