Anisotropic light transport is extremely common among scattering materials, yet a comprehensive picture of how macroscopic diffusion is determined by microscopic tensor scattering coefficients is not fully established yet. In this work, we present a theoretical and experimental study of diffusion in structurally anisotropic media with uniaxially symmetric scattering coefficients. Exact analytical relations are derived in the case of index-matched turbid media, unveiling the general relation between microscopic scattering coefficients and the resulting macroscopic diffusion tensor along different directions. Excellent agreement is found against anisotropic Monte Carlo simulations up to high degrees of anisotropy, in contrast with previously proposed approaches. The obtained solutions are used to analyze experimental measurements of anisotropic light transport in polystyrene foam samples under different degrees of uniaxial compression, providing a practical example of their applicability.

Diffusion of light in structurally anisotropic media with uniaxial symmetry / Pini, Ernesto; Martelli, Fabrizio; Gatto, Alexander; Schäfer, Henrik; Wiersma, Diederik S.; Pattelli, Lorenzo. - In: PHYSICAL REVIEW RESEARCH. - ISSN 2643-1564. - ELETTRONICO. - 6:(2024), pp. 023051.0-023051.0. [10.1103/physrevresearch.6.023051]

Diffusion of light in structurally anisotropic media with uniaxial symmetry

Pini, Ernesto;Martelli, Fabrizio;Wiersma, Diederik S.;Pattelli, Lorenzo
2024

Abstract

Anisotropic light transport is extremely common among scattering materials, yet a comprehensive picture of how macroscopic diffusion is determined by microscopic tensor scattering coefficients is not fully established yet. In this work, we present a theoretical and experimental study of diffusion in structurally anisotropic media with uniaxially symmetric scattering coefficients. Exact analytical relations are derived in the case of index-matched turbid media, unveiling the general relation between microscopic scattering coefficients and the resulting macroscopic diffusion tensor along different directions. Excellent agreement is found against anisotropic Monte Carlo simulations up to high degrees of anisotropy, in contrast with previously proposed approaches. The obtained solutions are used to analyze experimental measurements of anisotropic light transport in polystyrene foam samples under different degrees of uniaxial compression, providing a practical example of their applicability.
2024
6
0
0
Goal 3: Good health and well-being
Pini, Ernesto; Martelli, Fabrizio; Gatto, Alexander; Schäfer, Henrik; Wiersma, Diederik S.; Pattelli, Lorenzo
File in questo prodotto:
File Dimensione Formato  
PhysRevResearch.6.023051.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 1.86 MB
Formato Adobe PDF
1.86 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1357534
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact