Syntheses of multifunctional polymers aim to engineer a wide range of material properties by adjusting the composition and positioning of functional groups. While manifold syntheses of side-chain-functionalized polymers are known, synthetic protocols for main-chain-functionalized polymers are less common. This work describes a general one-pot strategy to prepare polymers containing multiple functional moieties in their main-chain, e.g., azobenzene units separated by variable oligomers. The polymerization proceeds in two steps, starting from a single azobenzene initiator and commercially available monomers (lactones and cyclic carbonates). Various main-chain-functionalized polymers were obtained with a predictable and adjustable ratio of monomer units (5-20) to photoswitchable azobenzene groups. The thermal properties of these polymers were analyzed and rationalized with regard to the parent polymers' properties and the peculiarities arising from their segmented microstructure. Furthermore, the azobenzenes' ability to undergo light-induced cis/trans-isomerization is confirmed. High isomerization yields of up to 90% were observed for the polymers in solution with a half-life of several days for the cis-isomers in solution. When irradiated as solid films, the azobenzenes still undergo isomerization, but the cis-isomers are less stable compared to the liquid state.

Photoswitches in Order: One-Pot Synthesis of Azobenzene Main-Chain and Segmented Copolymers / Rossi, Ruggero; Martella, Daniele; Parmeggiani, Camilla; Hirschmann, Max; Fuoco, Tiziana. - In: ACS APPLIED POLYMER MATERIALS. - ISSN 2637-6105. - ELETTRONICO. - 6:(2024), pp. 1563-1572. [10.1021/acsapm.3c02849]

Photoswitches in Order: One-Pot Synthesis of Azobenzene Main-Chain and Segmented Copolymers

Rossi, Ruggero;Martella, Daniele
;
Parmeggiani, Camilla;
2024

Abstract

Syntheses of multifunctional polymers aim to engineer a wide range of material properties by adjusting the composition and positioning of functional groups. While manifold syntheses of side-chain-functionalized polymers are known, synthetic protocols for main-chain-functionalized polymers are less common. This work describes a general one-pot strategy to prepare polymers containing multiple functional moieties in their main-chain, e.g., azobenzene units separated by variable oligomers. The polymerization proceeds in two steps, starting from a single azobenzene initiator and commercially available monomers (lactones and cyclic carbonates). Various main-chain-functionalized polymers were obtained with a predictable and adjustable ratio of monomer units (5-20) to photoswitchable azobenzene groups. The thermal properties of these polymers were analyzed and rationalized with regard to the parent polymers' properties and the peculiarities arising from their segmented microstructure. Furthermore, the azobenzenes' ability to undergo light-induced cis/trans-isomerization is confirmed. High isomerization yields of up to 90% were observed for the polymers in solution with a half-life of several days for the cis-isomers in solution. When irradiated as solid films, the azobenzenes still undergo isomerization, but the cis-isomers are less stable compared to the liquid state.
2024
6
1563
1572
Goal 7: Affordable and clean energy
Rossi, Ruggero; Martella, Daniele; Parmeggiani, Camilla; Hirschmann, Max; Fuoco, Tiziana
File in questo prodotto:
File Dimensione Formato  
rossi-et-al-2024-photoswitches-in-order-one-pot-synthesis-of-azobenzene-main-chain-and-segmented-copolymers.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 2.79 MB
Formato Adobe PDF
2.79 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1358191
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact