: Aptamers have superior structural properties and have been widely used in bacterial detection methods. However, the problem of low affinity still exists in complex sample detection. In contrast, hybridization chain reaction (HCR)-based model I and rolling circle amplification (RCA)-based model II multivalent activatable aptamers (multi-Apts) can fulfill the need for low-cost, rapid, highly sensitive and high affinity detection of S. typhimurium. In our research, two models of multi-Apts were designed. First, a monovalent activatable aptamer (mono-Apt) was constructed by fluorescence resonance energy transfer (FRET) with an S. typhimurium aptamer and its complementary chain of BHQ1. Next, the DNA scaffold was obtained by HCR and RCA, and the multi-Apts were obtained by self-assembly of the mono-Apt with a DNA scaffold. In model I, when target was presented, the complementary chain BHQ1 was released due to the binding of multi-Apts to the target and was subsequently adsorbed by UIO66. Finally, a FRET-based fluorescence detection signal was obtained. In mode II, the multi-Apts bound to the target, and the complementary chain BHQ1 was released to become the trigger chain for the next round of amplification of HCR with a fluorescence detection signal. HCR and RCA based multi-Apts were able to detect S. typhimurium as low as 2 CFU mL-1 and 1 CFU mL-1 respectively. Multi-Apts amplification strategy provides a new method for early diagnosis of pathogenic microorganisms in foods.

Synthesis of dual models multivalent activatable aptamers based on HCR and RCA for ultrasensitive detection of Salmonella typhimurium / Dou S.; Liu M.; Wang H.; Zhou S.; Marrazza G.; Guo Y.; Sun X.; Darwish I.A.. - In: TALANTA. - ISSN 0039-9140. - ELETTRONICO. - 275:(2024), pp. 126101.0-126101.0. [10.1016/j.talanta.2024.126101]

Synthesis of dual models multivalent activatable aptamers based on HCR and RCA for ultrasensitive detection of Salmonella typhimurium

Wang H.;Marrazza G.;Guo Y.
;
2024

Abstract

: Aptamers have superior structural properties and have been widely used in bacterial detection methods. However, the problem of low affinity still exists in complex sample detection. In contrast, hybridization chain reaction (HCR)-based model I and rolling circle amplification (RCA)-based model II multivalent activatable aptamers (multi-Apts) can fulfill the need for low-cost, rapid, highly sensitive and high affinity detection of S. typhimurium. In our research, two models of multi-Apts were designed. First, a monovalent activatable aptamer (mono-Apt) was constructed by fluorescence resonance energy transfer (FRET) with an S. typhimurium aptamer and its complementary chain of BHQ1. Next, the DNA scaffold was obtained by HCR and RCA, and the multi-Apts were obtained by self-assembly of the mono-Apt with a DNA scaffold. In model I, when target was presented, the complementary chain BHQ1 was released due to the binding of multi-Apts to the target and was subsequently adsorbed by UIO66. Finally, a FRET-based fluorescence detection signal was obtained. In mode II, the multi-Apts bound to the target, and the complementary chain BHQ1 was released to become the trigger chain for the next round of amplification of HCR with a fluorescence detection signal. HCR and RCA based multi-Apts were able to detect S. typhimurium as low as 2 CFU mL-1 and 1 CFU mL-1 respectively. Multi-Apts amplification strategy provides a new method for early diagnosis of pathogenic microorganisms in foods.
2024
275
0
0
Dou S.; Liu M.; Wang H.; Zhou S.; Marrazza G.; Guo Y.; Sun X.; Darwish I.A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1360883
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact