We study Cheeger and $p$-eigenvalue partition problems depending on a given evaluation function $\Phi$ for $p\in[1,\infty)$. We prove existence and regularity of minima, relations among the problems, convergence, and stability with respect to $p$ and to $\Phi$.
On the $N$-Cheeger problem for component-wise increasing norms / Saracco G.; Stefani G.. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - ELETTRONICO. - 189:(2024), pp. 103593.1-103593.35. [10.1016/j.matpur.2024.06.008]
On the $N$-Cheeger problem for component-wise increasing norms
Saracco G.;
2024
Abstract
We study Cheeger and $p$-eigenvalue partition problems depending on a given evaluation function $\Phi$ for $p\in[1,\infty)$. We prove existence and regularity of minima, relations among the problems, convergence, and stability with respect to $p$ and to $\Phi$.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2024 - On the N-Cheeger problem for component-wise increasing norms - Saracco, Stefani.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
694.45 kB
Formato
Adobe PDF
|
694.45 kB | Adobe PDF | Richiedi una copia |
N-Cheeger_pp.pdf
accesso aperto
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Creative commons
Dimensione
621.48 kB
Formato
Adobe PDF
|
621.48 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.