We extend the Mixture of Latent Trait Analyzers (MLTA) with concomitant variables in a multilevel framework to perform a hierarchical clustering of first and second-level units. The use of Mixture of Latent Trait Analyzers allows us to cluster first-level units, while also accounting for the residual variability of items in the data matrix. Furthermore, a multilevel approach allows us to account for the hierarchical structure of the data. Last, the inclusion of concomitant variables enables us understanding how first-level units’ characteristics influence clustering formation.

Hierarchical Mixtures of Latent Trait Analyzers with concomitant variables / Dalila Failli; Maria Francesca Marino; Bruno Arpino. - ELETTRONICO. - (2024), pp. 84-89. (Intervento presentato al convegno Statistics and Data Science Conference).

Hierarchical Mixtures of Latent Trait Analyzers with concomitant variables

Dalila Failli;Maria Francesca Marino;
2024

Abstract

We extend the Mixture of Latent Trait Analyzers (MLTA) with concomitant variables in a multilevel framework to perform a hierarchical clustering of first and second-level units. The use of Mixture of Latent Trait Analyzers allows us to cluster first-level units, while also accounting for the residual variability of items in the data matrix. Furthermore, a multilevel approach allows us to account for the hierarchical structure of the data. Last, the inclusion of concomitant variables enables us understanding how first-level units’ characteristics influence clustering formation.
2024
Proceedings of the Statistics and Data Science 2024 Conference - New perspectives on Statistics and Data Science
Statistics and Data Science Conference
Dalila Failli; Maria Francesca Marino; Bruno Arpino
File in questo prodotto:
File Dimensione Formato  
Failli_SDS_1.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 2.72 MB
Formato Adobe PDF
2.72 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1364814
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact