We extend the Mixture of Latent Trait Analyzers (MLTA) with concomitant variables in a multilevel framework to perform a hierarchical clustering of first and second-level units. The use of Mixture of Latent Trait Analyzers allows us to cluster first-level units, while also accounting for the residual variability of items in the data matrix. Furthermore, a multilevel approach allows us to account for the hierarchical structure of the data. Last, the inclusion of concomitant variables enables us understanding how first-level units’ characteristics influence clustering formation.
Hierarchical Mixtures of Latent Trait Analyzers with concomitant variables / Dalila Failli; Maria Francesca Marino; Bruno Arpino. - ELETTRONICO. - (2024), pp. 84-89. (Intervento presentato al convegno Statistics and Data Science Conference).
Hierarchical Mixtures of Latent Trait Analyzers with concomitant variables
Dalila Failli;Maria Francesca Marino;
2024
Abstract
We extend the Mixture of Latent Trait Analyzers (MLTA) with concomitant variables in a multilevel framework to perform a hierarchical clustering of first and second-level units. The use of Mixture of Latent Trait Analyzers allows us to cluster first-level units, while also accounting for the residual variability of items in the data matrix. Furthermore, a multilevel approach allows us to account for the hierarchical structure of the data. Last, the inclusion of concomitant variables enables us understanding how first-level units’ characteristics influence clustering formation.File | Dimensione | Formato | |
---|---|---|---|
Failli_SDS_1.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
2.72 MB
Formato
Adobe PDF
|
2.72 MB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.