Abstract Background: The need for efficient and simplified techniques for seafood traceability is growing. This study proposes the Biolog EcoPlate assay as an innovative method for assessing wild and farmed Sparus aurata traceability, offering advantages over other molecular techniques in terms of technical simplicity. Methods: The Biolog EcoPlate assay, known for its high-throughput capabilities in microbial ecology, was utilized to evaluate the functional diversity of microbial communities from various organs of S. aurata (seabream) from the Mediterranean area. Samples were taken from the anterior and posterior gut, cloaca swabs and gills to distinguish between farmed and wild-caught individuals. The analysis focused on color development in OmniLog Units for specific carbon sources at 48 h. Results: Gills provided the most accurate clusterization of sample origin. The assay monitored the development of color for carbon sources such as α-cyclodextrin, D-cellobiose, glycogen, α-D-lactose, L-threonine and L-phenylalanine. A mock experiment using principal component analysis (PCA) successfully identified the origin of a blind sample. Shannon and Simpson indexes were used to statistically assess the diversity, reflecting the clusterization of different organ samples; Conclusions: The Biolog EcoPlate assay proves to be a quick, cost-effective method for discriminate S. aurata traceability (wild vs. farmed), demonstrating reliable reproducibility and effective differentiation between farmed and wild-caught seabream.
A Microbial Phenomics Approach to Determine Metabolic Signatures to Enhance Seabream Sparus aurata Traceability, Differentiating between Wild-Caught and Farmed / Nerini, Marta; Russo, Alessandro; Decorosi, Francesca; Meriggi, Niccolò; Viti, Carlo; Cavalieri, Duccio; Marvasi, Massimiliano. - In: FOODS. - ISSN 2304-8158. - ELETTRONICO. - 13:(2024), pp. 0-0. [10.3390/foods13172726]
A Microbial Phenomics Approach to Determine Metabolic Signatures to Enhance Seabream Sparus aurata Traceability, Differentiating between Wild-Caught and Farmed
Nerini, Marta;Russo, Alessandro;Decorosi, Francesca;Viti, Carlo;Cavalieri, Duccio;Marvasi, Massimiliano
2024
Abstract
Abstract Background: The need for efficient and simplified techniques for seafood traceability is growing. This study proposes the Biolog EcoPlate assay as an innovative method for assessing wild and farmed Sparus aurata traceability, offering advantages over other molecular techniques in terms of technical simplicity. Methods: The Biolog EcoPlate assay, known for its high-throughput capabilities in microbial ecology, was utilized to evaluate the functional diversity of microbial communities from various organs of S. aurata (seabream) from the Mediterranean area. Samples were taken from the anterior and posterior gut, cloaca swabs and gills to distinguish between farmed and wild-caught individuals. The analysis focused on color development in OmniLog Units for specific carbon sources at 48 h. Results: Gills provided the most accurate clusterization of sample origin. The assay monitored the development of color for carbon sources such as α-cyclodextrin, D-cellobiose, glycogen, α-D-lactose, L-threonine and L-phenylalanine. A mock experiment using principal component analysis (PCA) successfully identified the origin of a blind sample. Shannon and Simpson indexes were used to statistically assess the diversity, reflecting the clusterization of different organ samples; Conclusions: The Biolog EcoPlate assay proves to be a quick, cost-effective method for discriminate S. aurata traceability (wild vs. farmed), demonstrating reliable reproducibility and effective differentiation between farmed and wild-caught seabream.File | Dimensione | Formato | |
---|---|---|---|
foods-13-02726.pdf
accesso aperto
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Creative commons
Dimensione
2.93 MB
Formato
Adobe PDF
|
2.93 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.