We employ an extension of the Mixture of Latent Trait Analyzers (MLTA) model to analyse the digital divide in Italy in a biclustering perspective. In detail, units (individuals) are partitioned into clusters (components) via a finite mixture of latent trait models; in each component, variables (digital skills) are partitioned into clusters (segments) by modifying the linear predictor's specification of the original MLTA model. This allows us to identify homogeneous groups of individuals with respect to subsets of digital skills, also accounting for the influence of demographic features on the probability of being digitally skilled.

A Biclustering Approach via Mixture of Latent Trait Analyzers for the Analysis of Digital Divide in Italy / Failli, Dalila; Arpino, Bruno; Marino, Maria Francesca; Martella, Francesca. - ELETTRONICO. - (2024), pp. 102-108. (Intervento presentato al convegno IWSM 2024) [10.1007/978-3-031-65723-8_16].

A Biclustering Approach via Mixture of Latent Trait Analyzers for the Analysis of Digital Divide in Italy

Failli, Dalila
;
Arpino, Bruno;Marino, Maria Francesca;
2024

Abstract

We employ an extension of the Mixture of Latent Trait Analyzers (MLTA) model to analyse the digital divide in Italy in a biclustering perspective. In detail, units (individuals) are partitioned into clusters (components) via a finite mixture of latent trait models; in each component, variables (digital skills) are partitioned into clusters (segments) by modifying the linear predictor's specification of the original MLTA model. This allows us to identify homogeneous groups of individuals with respect to subsets of digital skills, also accounting for the influence of demographic features on the probability of being digitally skilled.
2024
Developments in Statistical Modelling. IWSM 2024.
IWSM 2024
Failli, Dalila; Arpino, Bruno; Marino, Maria Francesca; Martella, Francesca
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1382153
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact