We establish existence and uniqueness of solutions to evolutive fractional mean field game systems with regularizing coupling for any order of the fractional Laplacian s ∈ (0,1). The existence is addressed via the vanishing viscosity method. In particular, we prove that in the subcritical regime s > 1/2 the solution of the system is classical, while if s ≤ 1/2, we find a distributional energy solution. To this aim, we develop an appropriate functional setting based on parabolic Bessel potential spaces. We show uniqueness of solutions both under monotonicity conditions and for short time horizons.

On the existence and uniqueness of solutions to time-dependent fractional MFG / Cirant M.; Goffi A.. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - STAMPA. - 51:(2019), pp. 913-954. [10.1137/18M1216420]

On the existence and uniqueness of solutions to time-dependent fractional MFG

Goffi A.
2019

Abstract

We establish existence and uniqueness of solutions to evolutive fractional mean field game systems with regularizing coupling for any order of the fractional Laplacian s ∈ (0,1). The existence is addressed via the vanishing viscosity method. In particular, we prove that in the subcritical regime s > 1/2 the solution of the system is classical, while if s ≤ 1/2, we find a distributional energy solution. To this aim, we develop an appropriate functional setting based on parabolic Bessel potential spaces. We show uniqueness of solutions both under monotonicity conditions and for short time horizons.
2019
51
913
954
Cirant M.; Goffi A.
File in questo prodotto:
File Dimensione Formato  
18m1216420.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 609.94 kB
Formato Adobe PDF
609.94 kB Adobe PDF   Richiedi una copia
1809.03034v2.pdf

accesso aperto

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Open Access
Dimensione 519.69 kB
Formato Adobe PDF
519.69 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1383934
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 25
social impact