We establish a priori Lipschitz estimates for equations with mixed local and nonlocal diffusion, coercive gradient terms and unbounded right-hand side in Lebesgue spaces through an integral refinement of the Bernstein method. This relies on a nonlinear, nonlocal and variational version of the Bochner identity that involves the adjoint equation of the linearization of the initial problem.

A priori Lipschitz estimates for nonlinear equations with mixed local and nonlocal diffusion via the adjoint-Bernstein method / Goffi, A. - In: BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA. - ISSN 1972-6724. - ELETTRONICO. - 17:(2024), pp. 373-390. [10.1007/s40574-022-00340-w]

A priori Lipschitz estimates for nonlinear equations with mixed local and nonlocal diffusion via the adjoint-Bernstein method

Goffi, A
2024

Abstract

We establish a priori Lipschitz estimates for equations with mixed local and nonlocal diffusion, coercive gradient terms and unbounded right-hand side in Lebesgue spaces through an integral refinement of the Bernstein method. This relies on a nonlinear, nonlocal and variational version of the Bochner identity that involves the adjoint equation of the linearization of the initial problem.
2024
17
373
390
Goffi, A
File in questo prodotto:
File Dimensione Formato  
Goffi_BUMI_2024.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 372.3 kB
Formato Adobe PDF
372.3 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1383943
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact