We provide Lipschitz regularity for solutions to viscous time-dependent Hamilton-Jacobi equations with right-hand side belonging to Lebesgue spaces. Our approach is based on a duality method, and relies on the analysis of the regularity of the gradient of solutions to a dual (Fokker-Planck) equation. Here, the regularizing effect is due to the non-degenerate diffusion and coercivity of the Hamiltonian in the gradient variable.

Lipschitz regularity for viscous Hamilton-Jacobi equations with Lp terms / Cirant M.; Goffi A.. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - STAMPA. - (2020), pp. 757-784. [10.1016/j.anihpc.2020.01.006]

Lipschitz regularity for viscous Hamilton-Jacobi equations with Lp terms

Goffi A.
2020

Abstract

We provide Lipschitz regularity for solutions to viscous time-dependent Hamilton-Jacobi equations with right-hand side belonging to Lebesgue spaces. Our approach is based on a duality method, and relies on the analysis of the regularity of the gradient of solutions to a dual (Fokker-Planck) equation. Here, the regularizing effect is due to the non-degenerate diffusion and coercivity of the Hamiltonian in the gradient variable.
2020
757
784
Cirant M.; Goffi A.
File in questo prodotto:
File Dimensione Formato  
lip_regularity_general_arxiv_v2.pdf

accesso aperto

Licenza: Open Access
Dimensione 457.76 kB
Formato Adobe PDF
457.76 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1383946
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact