Depositing single paramagnetic molecules on surfaces for sensing and quantum computing applications requires subtle topological control. To overcome issues that are often encountered with sandwich metal complexes, we exploit here the low symmetry architecture and suitable vaporability of mixed-sandwich [FluTi(cot)], Flu = fluorenyl, cot = cyclooctatetraene, to drive submonolayer coverage and select an adsorption configuration that preserves the spin of molecules deposited on Au(111). Electron paramagnetic resonance spectroscopy and ab initio quantum computation evidence a dz2 ground state that protects the spin from phonon-induced relaxation. Additionally, computed and measured spin coherence times exceed 10 mu s despite the molecules being rich in hydrogen. A thorough submonolayer investigation by scanning tunneling microscopy, X-ray photoelectron and absorption spectrocopies and X-ray magnetic circular dichroism measurements supported by DFT calculations reveals that the most stable configuration, with the fluorenyl in contact with the metal surface, prevents titanium(iii) oxidation and spin delocalization to the surface. This is a necessary condition for single molecular spin qubit addressing on surfaces.
(η8-Cyclooctatetraene)(η5-fluorenyl)titanium: a processable molecular spin qubit with optimized control of the molecule–substrate interface / Wisbeck, Sarita; Sorrentino, Andrea Luigi; Santana, Francielli S.; de Camargo, Luana C.; Ribeiro, Ronny R.; Salvadori, Enrico; Chiesa, Mario; Giaconi, Niccolò; Caneschi, Andrea; Mannini, Matteo; Poggini, Lorenzo; Briganti, Matteo; Serrano, Giulia; Soares, Jaísa F.; Sessoli, Roberta. - In: CHEMICAL SCIENCE. - ISSN 2041-6520. - STAMPA. - 15:(2024), pp. 14390-14398. [10.1039/d4sc03290j]
(η8-Cyclooctatetraene)(η5-fluorenyl)titanium: a processable molecular spin qubit with optimized control of the molecule–substrate interface
Sorrentino, Andrea Luigi;Caneschi, Andrea;Mannini, Matteo;Poggini, Lorenzo;Briganti, Matteo
;Serrano, Giulia
;Sessoli, Roberta
2024
Abstract
Depositing single paramagnetic molecules on surfaces for sensing and quantum computing applications requires subtle topological control. To overcome issues that are often encountered with sandwich metal complexes, we exploit here the low symmetry architecture and suitable vaporability of mixed-sandwich [FluTi(cot)], Flu = fluorenyl, cot = cyclooctatetraene, to drive submonolayer coverage and select an adsorption configuration that preserves the spin of molecules deposited on Au(111). Electron paramagnetic resonance spectroscopy and ab initio quantum computation evidence a dz2 ground state that protects the spin from phonon-induced relaxation. Additionally, computed and measured spin coherence times exceed 10 mu s despite the molecules being rich in hydrogen. A thorough submonolayer investigation by scanning tunneling microscopy, X-ray photoelectron and absorption spectrocopies and X-ray magnetic circular dichroism measurements supported by DFT calculations reveals that the most stable configuration, with the fluorenyl in contact with the metal surface, prevents titanium(iii) oxidation and spin delocalization to the surface. This is a necessary condition for single molecular spin qubit addressing on surfaces.File | Dimensione | Formato | |
---|---|---|---|
ChemSci_FluTicot_d4sc03290j.pdf
accesso aperto
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
1.56 MB
Formato
Adobe PDF
|
1.56 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.