We establish analogues of the geometric Pitman 2M−X theorem of Matsumoto and Yor and of the classical Dufresne identity, for a multiplicative random walk on positive definite matrices with Beta type II distributed increments. The Dufresne type identity provides another example of a stochastic matrix recursion, as considered by Chamayou and Letac (J. Theoret. Probab. 12, 1999), that admits an explicit solution.
Matsumoto-Yor and Dufresne type theorems for a random walk on positive definite matrices / Arista J; Bisi E; O'Connell N. - In: ANNALES DE L'INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES. - ISSN 0246-0203. - STAMPA. - 60:(2024), pp. 923-945. [10.1214/22-AIHP1338]
Matsumoto-Yor and Dufresne type theorems for a random walk on positive definite matrices
Bisi E;
2024
Abstract
We establish analogues of the geometric Pitman 2M−X theorem of Matsumoto and Yor and of the classical Dufresne identity, for a multiplicative random walk on positive definite matrices with Beta type II distributed increments. The Dufresne type identity provides another example of a stochastic matrix recursion, as considered by Chamayou and Letac (J. Theoret. Probab. 12, 1999), that admits an explicit solution.File | Dimensione | Formato | |
---|---|---|---|
MatsumotoYor.pdf
Accesso chiuso
Licenza:
Tutti i diritti riservati
Dimensione
349.01 kB
Formato
Adobe PDF
|
349.01 kB | Adobe PDF | Richiedi una copia |
2112.12558v2.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
333.95 kB
Formato
Adobe PDF
|
333.95 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.