We establish analogues of the geometric Pitman 2M−X theorem of Matsumoto and Yor and of the classical Dufresne identity, for a multiplicative random walk on positive definite matrices with Beta type II distributed increments. The Dufresne type identity provides another example of a stochastic matrix recursion, as considered by Chamayou and Letac (J. Theoret. Probab. 12, 1999), that admits an explicit solution.

Matsumoto-Yor and Dufresne type theorems for a random walk on positive definite matrices / Arista J; Bisi E; O'Connell N. - In: ANNALES DE L'INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES. - ISSN 0246-0203. - STAMPA. - 60:(2024), pp. 923-945. [10.1214/22-AIHP1338]

Matsumoto-Yor and Dufresne type theorems for a random walk on positive definite matrices

Bisi E;
2024

Abstract

We establish analogues of the geometric Pitman 2M−X theorem of Matsumoto and Yor and of the classical Dufresne identity, for a multiplicative random walk on positive definite matrices with Beta type II distributed increments. The Dufresne type identity provides another example of a stochastic matrix recursion, as considered by Chamayou and Letac (J. Theoret. Probab. 12, 1999), that admits an explicit solution.
2024
60
923
945
Arista J; Bisi E; O'Connell N
File in questo prodotto:
File Dimensione Formato  
MatsumotoYor.pdf

Accesso chiuso

Licenza: Tutti i diritti riservati
Dimensione 349.01 kB
Formato Adobe PDF
349.01 kB Adobe PDF   Richiedi una copia
2112.12558v2.pdf

accesso aperto

Licenza: Creative commons
Dimensione 333.95 kB
Formato Adobe PDF
333.95 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1386117
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact