We present closed analytic expressions for the order alpha(s)(2) triangle diagram contributions to the matrix elements of the singlet and non-singlet axial vector currents between the vacuum and a quark-antiquark state. We have calculated these vertex functions for arbitrary momentum transfer and for four different sets of internal and external quark masses. We show that both the singlet and non-singlet vertex functions satisfy the correct chiral Ward identities. Using the exact expressions for the finite axial vector form factors, we check the quality and the convergence of expansions at production threshold and for asymptotic energies. (c) 2005 Elsevier B.V. All rights reserved.

Two-loop QCD corrections to the heavy quark form factors: Anomaly contributions / W. Bernreuther; BONCIANI, ROBERTO; T. Gehrmann; R. Heinesch; T. Leineweber; E. Remiddi. - In: NUCLEAR PHYSICS. B. - ISSN 0550-3213. - STAMPA. - 723:(2005), pp. 91-116. [10.1016/j.nuclphysb.2005.06.025]

Two-loop QCD corrections to the heavy quark form factors: Anomaly contributions

BONCIANI, ROBERTO;
2005

Abstract

We present closed analytic expressions for the order alpha(s)(2) triangle diagram contributions to the matrix elements of the singlet and non-singlet axial vector currents between the vacuum and a quark-antiquark state. We have calculated these vertex functions for arbitrary momentum transfer and for four different sets of internal and external quark masses. We show that both the singlet and non-singlet vertex functions satisfy the correct chiral Ward identities. Using the exact expressions for the finite axial vector form factors, we check the quality and the convergence of expansions at production threshold and for asymptotic energies. (c) 2005 Elsevier B.V. All rights reserved.
2005
723
91
116
W. Bernreuther; BONCIANI, ROBERTO; T. Gehrmann; R. Heinesch; T. Leineweber; E. Remiddi
File in questo prodotto:
File Dimensione Formato  
BBGHLR_NPB723(2005)91.pdf

Accesso chiuso

Licenza: Tutti i diritti riservati
Dimensione 281.1 kB
Formato Adobe PDF
281.1 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1386169
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 81
  • ???jsp.display-item.citation.isi??? 75
social impact