Objective: The purpose of this study was to determine the effectiveness of a new AI -based tool called NAIF (NAFLD-AI-Fibrosis) in identifying individuals from the general population with advanced liver fibrosis (stage F3/F4). We compared NAIF's performance to two existing risk score calculators, aspartate aminotransferase-toplatelet ratio index (APRI) and fibrosis -4 (Fib4). Methods: To set up the algorithm for diagnosing severe liver fibrosis (defined as Fibroscan (R) values E >= 9.7 KPa), we used 19 blood biochemistry parameters and two demographic parameters in a group of 5,962 individuals from the NHANES population (2017-2020 pre -pandemic, public database). We then assessed the algorithm's performance by comparing its accuracy, precision, sensitivity, specificity, and F1 score values to those of APRI and Fib4 scoring systems. Results: In a kept -out sub dataset of the NHANES population, NAIF achieved a predictive precision of 72 %, a sensitivity of 61 %, and a specificity of 77 % in correctly identifying adults (aged 18-79 years) with severe liver fibrosis. Additionally, NAIF performed well when tested with two external datasets of Italian patients with a Fibroscan (R) score E >= 9.7 kPa, and with an external dataset of patients with diagnosis of severe liver fibrosis through biopsy. Conclusions: The results of our study suggest that NAIF, using routinely available parameters, outperforms in sensitivity existing scoring methods (Fib4 and APRI) in diagnosing severe liver fibrosis, even when tested with external validation datasets. NAIF uses routinely available parameters, making it a promising tool for identifying individuals with advanced liver fibrosis from the general population. Word count abstract: 236.

NAIF: A novel artificial intelligence-based tool for accurate diagnosis of stage F3/F4 liver fibrosis in the general adult population, validated with three external datasets / Hassoun, Samir; Bruckmann, Chiara; Ciardullo, Stefano; Perseghin, Gianluca; Marra, Fabio; Curto, Armando; Arena, Umberto; Broccolo, Francesco; Di Gaudio, Francesca. - In: INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS. - ISSN 1386-5056. - STAMPA. - 185:(2024), pp. 105373.1-105373.8. [10.1016/j.ijmedinf.2024.105373]

NAIF: A novel artificial intelligence-based tool for accurate diagnosis of stage F3/F4 liver fibrosis in the general adult population, validated with three external datasets

Marra, Fabio;Curto, Armando;Arena, Umberto;
2024

Abstract

Objective: The purpose of this study was to determine the effectiveness of a new AI -based tool called NAIF (NAFLD-AI-Fibrosis) in identifying individuals from the general population with advanced liver fibrosis (stage F3/F4). We compared NAIF's performance to two existing risk score calculators, aspartate aminotransferase-toplatelet ratio index (APRI) and fibrosis -4 (Fib4). Methods: To set up the algorithm for diagnosing severe liver fibrosis (defined as Fibroscan (R) values E >= 9.7 KPa), we used 19 blood biochemistry parameters and two demographic parameters in a group of 5,962 individuals from the NHANES population (2017-2020 pre -pandemic, public database). We then assessed the algorithm's performance by comparing its accuracy, precision, sensitivity, specificity, and F1 score values to those of APRI and Fib4 scoring systems. Results: In a kept -out sub dataset of the NHANES population, NAIF achieved a predictive precision of 72 %, a sensitivity of 61 %, and a specificity of 77 % in correctly identifying adults (aged 18-79 years) with severe liver fibrosis. Additionally, NAIF performed well when tested with two external datasets of Italian patients with a Fibroscan (R) score E >= 9.7 kPa, and with an external dataset of patients with diagnosis of severe liver fibrosis through biopsy. Conclusions: The results of our study suggest that NAIF, using routinely available parameters, outperforms in sensitivity existing scoring methods (Fib4 and APRI) in diagnosing severe liver fibrosis, even when tested with external validation datasets. NAIF uses routinely available parameters, making it a promising tool for identifying individuals with advanced liver fibrosis from the general population. Word count abstract: 236.
2024
185
1
8
Goal 3: Good health and well-being
Hassoun, Samir; Bruckmann, Chiara; Ciardullo, Stefano; Perseghin, Gianluca; Marra, Fabio; Curto, Armando; Arena, Umberto; Broccolo, Francesco; Di Gaud...espandi
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1386505624000364-main.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 2.29 MB
Formato Adobe PDF
2.29 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1388377
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact