: The interplay between geographic barriers and climatic oscillations over the past 2.6 million years structured genetic variation at the continental scale. The genetic legacy of the Quaternary ice ages (GLQ) hypothesis outlines this phenomenon for Europe, but a comprehensive data-driven assessment is lacking. Using innovative genetic landscape methods, we model the GLQ in the West Palearctic based on 31,653 Cytochrome c oxidase subunit 1 (COI) sequences from 494 butterfly species and three functional traits. Seven distinct bioregions with varying levels of genetic endemicity emerge, revealing a latitudinal gradient in variation that confirms the "southern richness, northern purity" hypothesis. Through shift from case studies to a comparative approach, we objectively identify the main glacial refugia, colonization routes, and barriers to dispersal. Our findings offer a quantitative model of the GLQ across Europe, North Africa, and neighboring Asia, with broader applicability to other taxa and potentially scalable to encompass life on Earth.
The genetic legacy of the Quaternary ice ages for West Palearctic butterflies / Dapporto, Leonardo; Menchetti, Mattia; Dincă, Vlad; Talavera, Gerard; Garcia-Berro, Aurora; D'Ercole, Jacopo; Hebert, Paul Dn; Vila, Roger. - In: SCIENCE ADVANCES. - ISSN 2375-2548. - ELETTRONICO. - 10:(2024), pp. eadm859.0-eadm859.0. [10.1126/sciadv.adm8596]
The genetic legacy of the Quaternary ice ages for West Palearctic butterflies
Dapporto, Leonardo
;Menchetti, Mattia;Vila, Roger
2024
Abstract
: The interplay between geographic barriers and climatic oscillations over the past 2.6 million years structured genetic variation at the continental scale. The genetic legacy of the Quaternary ice ages (GLQ) hypothesis outlines this phenomenon for Europe, but a comprehensive data-driven assessment is lacking. Using innovative genetic landscape methods, we model the GLQ in the West Palearctic based on 31,653 Cytochrome c oxidase subunit 1 (COI) sequences from 494 butterfly species and three functional traits. Seven distinct bioregions with varying levels of genetic endemicity emerge, revealing a latitudinal gradient in variation that confirms the "southern richness, northern purity" hypothesis. Through shift from case studies to a comparative approach, we objectively identify the main glacial refugia, colonization routes, and barriers to dispersal. Our findings offer a quantitative model of the GLQ across Europe, North Africa, and neighboring Asia, with broader applicability to other taxa and potentially scalable to encompass life on Earth.I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.