Background: The minimum mortality temperature (MMT) or MMT percentile (MMTP) is an indicator of population susceptibility to nonoptimum temperatures. MMT and MMTP change over time; however, the changing directions show region-wide heterogeneity. We examined the heterogeneity of temporal changes in MMT and MMTP across multiple communities and in multiple countries. Methods: Daily time-series data for mortality and ambient mean temperature for 699 communities in 34 countries spanning 1986–2015 were analyzed using a two-stage meta-analysis. First, a quasi-Poisson regression was employed to estimate MMT and MMTP for each community during the designated subperiods. Second, we pooled the community-specific temporally varying estimates using mixed-effects meta-regressions to examine temporal changes in MMT and MMTP in the entire study population, as well as by climate zone, geographical region, and country. Results: Temporal increases in MMT and MMTP from 19.5 °C (17.9, 21.1) to 20.3 °C (18.5, 22.0) and from the 74.5 (68.3, 80.6) to 75.0 (71.0, 78.9) percentiles in the entire population were found, respectively. Temporal change was significantly heterogeneous across geographical regions (P < 0.001). Temporal increases in MMT were observed in East Asia (linear slope [LS] = 0.91, P = 0.02) and South-East Asia (LS = 0.62, P = 0.05), whereas a temporal decrease in MMT was observed in South Europe (LS = −0.46, P = 0.05). MMTP decreased temporally in North Europe (LS = −3.45, P = 0.02) and South Europe (LS = −2.86, P = 0.05). Conclusions: The temporal change in MMT or MMTP was largely heterogeneous. Population susceptibility in terms of optimum temperature may have changed under a warming climate, albeit with large region-dependent variations.
Temporal change in minimum mortality temperature under changing climate: A multicountry multicommunity observational study spanning 1986–2015 / Yang, Daewon; Hashizume, Masahiro; Tobías, Aurelio; Honda, Yasushi; Roye, Dominic; Oh, Jaemin; Dang, Tran Ngoc; Kim, Yoonhee; Abrutzky, Rosana; Guo, Yuming; Tong, Shilu; Coelho, Micheline de Sousa Zanotti Stagliorio; Saldiva, Paulo Hilario Nascimento; Lavigne, Eric; Correa, Patricia Matus; Ortega, Nicolás Valdés; Osorio, Samuel; Kyselý, Jan; Urban, Aleš; Orru, Hans; Indermitte, Ene; Jaakkola, Jouni; Ryti, Niilo; Pascal, Mathilde; Huber, Veronika; Schneider, Alexandra; Katsouyanni, Klea; Analitis, Antonis; Entezari, Alireza; Mayvaneh, Fatemeh; Goodman, Patrick; Zeka, Ariana; Michelozzi, Paola; de'Donato, Francesca; Alahmad, Barrak; Diaz, Magali Hurtado; la Cruz Valencia, César De; Overcenco, Ala; Houthuijs, Danny; Ameling, Caroline; Rao, Shilpa; Nunes, Baltazar; Madureira, Joana; Holo-bâc, Iulian Horia; Scovronick, Noah; Acquaotta, Fiorella; Kim, Ho; Lee, Whanhee; Íñiguez, Carmen; Forsberg, Bertil; Vicedo-Cabrera, Ana Maria; Ragettli, Martina S.; Guo, Yue-Liang Leon; Pan, Shih Chun; Li, Shanshan; Sera, Francesco; Zanobetti, Antonella; Schwartz, Joel; Armstrong, Ben; Gasparrini, Antonio; Chung, Yeonseung. - In: ENVIRONMENTAL EPIDEMIOLOGY. - ISSN 2474-7882. - ELETTRONICO. - 8:(2024), pp. 0-0. [10.1097/ee9.0000000000000334]
Temporal change in minimum mortality temperature under changing climate: A multicountry multicommunity observational study spanning 1986–2015
Sera, Francesco;
2024
Abstract
Background: The minimum mortality temperature (MMT) or MMT percentile (MMTP) is an indicator of population susceptibility to nonoptimum temperatures. MMT and MMTP change over time; however, the changing directions show region-wide heterogeneity. We examined the heterogeneity of temporal changes in MMT and MMTP across multiple communities and in multiple countries. Methods: Daily time-series data for mortality and ambient mean temperature for 699 communities in 34 countries spanning 1986–2015 were analyzed using a two-stage meta-analysis. First, a quasi-Poisson regression was employed to estimate MMT and MMTP for each community during the designated subperiods. Second, we pooled the community-specific temporally varying estimates using mixed-effects meta-regressions to examine temporal changes in MMT and MMTP in the entire study population, as well as by climate zone, geographical region, and country. Results: Temporal increases in MMT and MMTP from 19.5 °C (17.9, 21.1) to 20.3 °C (18.5, 22.0) and from the 74.5 (68.3, 80.6) to 75.0 (71.0, 78.9) percentiles in the entire population were found, respectively. Temporal change was significantly heterogeneous across geographical regions (P < 0.001). Temporal increases in MMT were observed in East Asia (linear slope [LS] = 0.91, P = 0.02) and South-East Asia (LS = 0.62, P = 0.05), whereas a temporal decrease in MMT was observed in South Europe (LS = −0.46, P = 0.05). MMTP decreased temporally in North Europe (LS = −3.45, P = 0.02) and South Europe (LS = −2.86, P = 0.05). Conclusions: The temporal change in MMT or MMTP was largely heterogeneous. Population susceptibility in terms of optimum temperature may have changed under a warming climate, albeit with large region-dependent variations.File | Dimensione | Formato | |
---|---|---|---|
Yang_2024.pdf
accesso aperto
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
1.26 MB
Formato
Adobe PDF
|
1.26 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.