We present an isogeometric method for Kirchhoff–Love shell analysis of shell structures with geometries composed of multiple patches and which possibly possess extraordinary vertices, i.e. vertices with a valency different to four. The proposed isogeometric shell discretisation is based on the one hand on the approximation of the mid-surface by a particular class of multi-patch surfaces, called analysis-suitable G1 (Collin et al., 2016), and on the other hand on the use of the globally C1-smooth isogeometric multi-patch spline space (Farahat et al., 2023). We use our developed technique within an isogeometric Kirchhoff–Love shell formulation (Kiendl et al., 2009) to study linear and non-linear shell problems on multi-patch structures. Thereby, the numerical results show the great potential of our method for efficient shell analysis of geometrically complex multi-patch structures which cannot be modelled without the use of extraordinary vertices.
Isogeometric analysis for multi-patch structured Kirchhoff–Love shells / Farahat A.; Verhelst H.M.; Kiendl J.; Kapl M.. - In: COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING. - ISSN 0045-7825. - ELETTRONICO. - 411:(2023), pp. 116060.0-116060.0. [10.1016/j.cma.2023.116060]
Isogeometric analysis for multi-patch structured Kirchhoff–Love shells
Verhelst H. M.;
2023
Abstract
We present an isogeometric method for Kirchhoff–Love shell analysis of shell structures with geometries composed of multiple patches and which possibly possess extraordinary vertices, i.e. vertices with a valency different to four. The proposed isogeometric shell discretisation is based on the one hand on the approximation of the mid-surface by a particular class of multi-patch surfaces, called analysis-suitable G1 (Collin et al., 2016), and on the other hand on the use of the globally C1-smooth isogeometric multi-patch spline space (Farahat et al., 2023). We use our developed technique within an isogeometric Kirchhoff–Love shell formulation (Kiendl et al., 2009) to study linear and non-linear shell problems on multi-patch structures. Thereby, the numerical results show the great potential of our method for efficient shell analysis of geometrically complex multi-patch structures which cannot be modelled without the use of extraordinary vertices.I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.